轻松学Pytorch-使用ResNet50实现图像分类
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转载自:OpenCV学堂
Hello大家好,这篇文章给大家详细介绍一下pytorch中最重要的组件torchvision,它包含了常见的数据集、模型架构与预训练模型权重文件、常见图像变换、计算机视觉任务训练。可以是说是pytorch中非常有用的模型迁移学习神器。本文将会介绍如何使用torchvison的预训练模型ResNet50实现图像分类。
Torchvision.models包里面包含了常见的各种基础模型架构,主要包括:
AlexNet
VGG
ResNet
SqueezeNet
DenseNet
Inception v3
GoogLeNet
ShuffleNet v2
MobileNet v2
ResNeXt
Wide ResNet
MNASNet
这里我选择了ResNet50,基于ImageNet训练的基础网络来实现图像分类, 网络模型下载与加载如下:
model = torchvision.models.resnet50(pretrained=True).eval().cuda()
tf = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)])
这里首先需要加载ImageNet的分类标签,目的是最后显示分类的文本标签时候使用。然后对输入图像完成预处理,使用ResNet50模型实现分类预测,对预测结果解析之后,显示标签文本,完整的代码演示如下:
1with open('imagenet_classes.txt') as f:
2 labels = [line.strip() for line in f.readlines()]
3
4src = cv.imread("D:/images/space_shuttle.jpg") # aeroplane.jpg
5image = cv.resize(src, (224, 224))
6image = np.float32(image) / 255.0
7image[:,:,] -= (np.float32(0.485), np.float32(0.456), np.float32(0.406))
8image[:,:,] /= (np.float32(0.229), np.float32(0.224), np.float32(0.225))
9image = image.transpose((2, 0, 1))
10input_x = torch.from_numpy(image).unsqueeze(0)
11print(input_x.size())
12pred = model(input_x.cuda())
13pred_index = torch.argmax(pred, 1).cpu().detach().numpy()
14print(pred_index)
15print("current predict class name : %s"%labels[pred_index[0]])
16cv.putText(src, labels[pred_index[0]], (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
17cv.imshow("input", src)
18cv.waitKey(0)
19cv.destroyAllWindows()
运行结果如下:
在torchvision中的模型基本上都可以转换为ONNX格式,而且被OpenCV DNN模块所支持,所以,很方便的可以对torchvision自带的模型转为ONNX,实现OpenCV DNN的调用,首先转为ONNX模型,直接使用torch.onnx.export即可转换(还不知道怎么转,快点看前面的例子)。转换之后使用OpenCV DNN调用的代码如下:
1with open('imagenet_classes.txt') as f:
2 labels = [line.strip() for line in f.readlines()]
3net = cv.dnn.readNetFromONNX("resnet.onnx")
4src = cv.imread("D:/images/messi.jpg") # aeroplane.jpg
5image = cv.resize(src, (224, 224))
6image = np.float32(image) / 255.0
7image[:, :, ] -= (np.float32(0.485), np.float32(0.456), np.float32(0.406))
8image[:, :, ] /= (np.float32(0.229), np.float32(0.224), np.float32(0.225))
9blob = cv.dnn.blobFromImage(image, 1.0, (224, 224), (0, 0, 0), False)
10net.setInput(blob)
11probs = net.forward()
12index = np.argmax(probs)
13cv.putText(src, labels[index], (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
14cv.imshow("input", src)
15cv.waitKey(0)
16cv.destroyAllWindows()
运行结果见上图,这里就不再贴了。
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。 下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。 下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。 交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~