InterpretML机器学习可解释性

联合创作 · 2023-09-26 06:17

InterpretML 是一个开源软件包,整合了最先进的机器学习可解释性技术。使用此包,你可以训练可解释的 glassbox 模型并解释黑盒系统。InterpretML 可帮助你了解模型的全局行为,或了解个别预测背后的原因。

优点:

  • 模型可解释性:模型可解释性可帮助组织中的开发人员、数据科学家和业务利益相关者全面了解他们的机器学习模型。它还可以用于调试模型、解释预测并启用审计以满足法规要求。
  • 便于使用:通过开放的统一 API 集和丰富的可视化访问最先进的可解释性技术。

  • 灵活和可定制:使用各种解释器和使用交互式视觉效果的技术来理解模型。选择您的算法并轻松尝试算法组合。

  • 综合能力探索模型属性,例如性能、全局和局部特征,并同时比较多个模型。在操作数据并查看对模型的影响时运行假设分析。

浏览 3
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报