基于UNet网络实现的人像分割 | 附数据集

共 5686字,需浏览 12分钟

 ·

2021-10-02 20:25

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

主要内容

人像分割简介
UNet的简介
UNet实现人像分割
人像分割简介


人像分割的相关应用非常广,例如基于人像分割可以实现背景的替换做出各种非常酷炫的效果。我们将训练数据扩充到人体分割,那么我们就是对人体做美颜特效处理,同时对背景做其他的特效处理,这样整张画面就会变得更加有趣,更加提高颜值了,这里我们对人体前景做美颜调色处理,对背景做了以下特效:

①景深模糊效果,用来模拟双摄聚焦效果;
②马赛克效果
③缩放模糊效果
④运动模糊效果
⑤油画效果
⑥线条漫画效果
⑦Glow梦幻效果
⑧铅笔画场景效果
⑨扩散效果

例子:




例子来源:https://blog.csdn.net/Trent1985/article/details/80578841

https://zhuanlan.zhihu.com/p/48080465 (实现背景灰化)

而在在实现这些效果之前,所需要的一步操作都是需要将人像抠出来。今天的主要内容是要介绍如何使用UNet实现人像分割。


UNet的简介

UNet的结构非常简单,广泛应用于医学图像分割,2015年发表在 MICCAI,谷歌学术上目前引用量8894,可以看出来其影响力。

UNet的结构,有两个最大的特点,U型结构和skip-connection(如下图)。


UNet网络,类型于一个U字母:首先进行Conv(两次)+Pooling下采样;然后Deconv反卷积进行上采样(部分采用resize+线性插值上采样),crop之前的低层feature map,进行融合;然后再次上采样。重复这个过程,直到获得输出388x388x2的feature map,最后经过softmax获得output segment map。总体来说与FCN思路非常类似。

U-Net采用了与FCN完全不同的特征融合方式:拼接!

参考资料:https://zhuanlan.zhihu.com/p/57437131

https://www.zhihu.com/question/269914775/answer/586501606


UNet实现人像分割


该项目是基于 https://github.com/milesial/Pytorch-UNet (2.6k star 车辆分割)修改的,并提供人像分割的数据集(1.15G)。

人像分割项目链接:https://github.com/leijue222/portrait-matting-unet-flask


官方下载链接:http://www.cse.cuhk.edu.hk/leojia/projects/automatting/index.html

或者:

百度网盘:http://pan.baidu.com/s/1dE14537

密码:ndg8

该项目已经提供了预训练模型,如果你不想重新训练,可以自己clone下来,按照下面的操作一步一步运行即可。


环境配置

  • Python 3.6

  • PyTorch >= 1.1.0

  • Torchvision >= 0.3.0

  • Flask 1.1.1

  • future 0.18.2

  • matplotlib 3.1.3

  • numpy 1.16.0

  • Pillow 6.2.0

  • protobuf 3.11.3

  • tensorboard 1.14.0

  • tqdm==4.42.1

# clone 项目git clone https://github.com/leijue222/portrait-matting-unet-flask.git
# 进入到文件夹中cd portrait-matting-unet-flask/
# 准备好一张待分割的人像图片,运行下面的代码即可生成mask并保存python predict.py -i image.jpg -o output.jpg

作者提供的测试demo



如果你想重新训练的话,也很容易,根据上面提供的数据集,将原图和mask分别

放置在 文件夹 data/imgs和 data/masks 路径下即可


然后运行下面的代码

python train.py -e 200 -b 1 -l 0.1 -s 0.5 -v 15.0

各个参数的含义


-e 表示 epoch 数

-b 表示 batch size

-l 表示学习率

-s 表示 scale

-v 表示 验证集所占的百分比


最后我们在看一下 UNet 网络的核心代码


定义UNet 需要用的主要模块

class DoubleConv(nn.Module):    """(convolution => [BN] => ReLU) * 2"""    def __init__(self, in_channels, out_channels):        super().__init__()        self.double_conv = nn.Sequential(            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),            nn.BatchNorm2d(out_channels),            nn.ReLU(inplace=True),            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),            nn.BatchNorm2d(out_channels),            nn.ReLU(inplace=True)        )    def forward(self, x):        return self.double_conv(x)
class Down(nn.Module): """Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels)        ) def forward(self, x): return self.maxpool_conv(x)
class Up(nn.Module):    """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True):        super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = torch.tensor([x2.size()[2] - x1.size()[2]]) diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1)        return self.conv(x)
class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x): return self.conv(x)

利用上面定义好的模块,轻松的实现UNet网络

class UNet(nn.Module):    def __init__(self, n_channels, n_classes, bilinear=True):        super(UNet, self).__init__()        self.n_channels = n_channels        self.n_classes = n_classes        self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512) self.down4 = Down(512, 512) self.up1 = Up(1024, 256, bilinear) self.up2 = Up(512, 128, bilinear) self.up3 = Up(256, 64, bilinear) self.up4 = Up(128, 64, bilinear) self.outc = OutConv(64, n_classes)
def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits


资料汇总


人像分割项目链接:https://github.com/leijue222/portrait-matting-unet-flask


数据集下载

百度网盘:http://pan.baidu.com/s/1dE14537

密码:ndg8


官方下载链接:http://www.cse.cuhk.edu.hk/leojia/projects/automatting/index.html


好消息,小白学视觉团队的知识星球开通啦,为了感谢大家的支持与厚爱,团队决定将价值149元的知识星球现时免费加入。各位小伙伴们要抓住机会哦!


下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 56
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报