LeCun主讲!纽约大学《深度学习》2021课程全部放出

共 2605字,需浏览 6分钟

 ·

2021-11-18 23:25

点击上方机器学习与生成对抗网络”,关注星标

获取有趣、好玩的前沿干货!

文章编辑 机器学习与推荐算法


Yann LeCun在纽约大学数据科学中心(CDS)主讲的《深度学习》2021年春季课程现已全部在线可看!


该课程自2021年春季开始由Yann LeCun与Alfredo Canziani等共同执教。




CDS发布了Yann LeCun的深度学习(DS-GA 1008)课程的所有材料,包括带英文字幕教学视频、书面讲义、课件以及带有PyTorch实现的可执行Jupyter Notebooks。


课程关注深度学习和表示学习的最新技术,重点关注有监督和无监督深度学习、嵌入方法、度量学习、卷积和循环网,以及在计算机视觉、自然语言理解和语音识别方面的应用。前提条件包括:DS-GA 1001数据科学入门或研究生水平的机器学习课程。

地址:https://cds.nyu.edu/deep-learning/


资源
  • YouTube视频:https://www.youtube.com/watch?v=mTtDfKgLm54

  • 官方中文版讲义:https://atcold.github.io/pytorch-Deep-Learning/zh/

  • 课件:https://github.com/Atcold/NYU-DLSP21

  • GitHub:hhttps://atcold.github.io/NYU-DLSP21/

  • Reddit论坛:https://www.reddit.com/r/NYU_DeepLearning/



授课老师:



目录内容:

Theme 1: Introduction

  • History and resources 🎥 🖥

  • Gradient descent and the backpropagation algorithm 🎥 🖥

  • Neural nets inference 🎥 📓

  • Modules and architectures 🎥

  • Neural nets training 🎥 🖥 📓📓

  • Homework 1: backprop

Theme 2: Parameters sharing

  • Recurrent and convolutional nets 🎥 🖥 📝

  • ConvNets in practice 🎥 🖥 📝

  • Natural signals properties and the convolution 🎥 🖥 📓

  • Recurrent neural networks, vanilla and gated (LSTM) 🎥 🖥 📓📓

  • Homework 2: RNN & CNN

Theme 3: Energy based models, foundations

  • Energy based models (I) 🎥 🖥

  • Inference for LV-EBMs 🎥 🖥

  • What are EBMs good for? 🎥

  • Energy based models (II) 🎥 🖥 📝

  • Training LV-EBMs 🎥 🖥

  • Homework 3: structured prediction

Theme 4: Energy based models, advanced

  • Energy based models (III) 🎥 🖥

  • Unsup learning and autoencoders 🎥 🖥

  • Energy based models (VI) 🎥 🖥

  • From LV-EBM to target prop to (any) autoencoder 🎥 🖥

  • Energy based models (V) 🎥 🖥

  • AEs with PyTorch and GANs 🎥 🖥 📓📓

Theme 5: Associative memories

  • Energy based models (V) 🎥 🖥

  • Attention & transformer 🎥 🖥 📓

Theme 6: Graphs

  • Graph transformer nets [A][B] 🎥 🖥

  • Graph convolutional nets (I) [from last year] 🎥 🖥

  • Graph convolutional nets (II) 🎥 🖥 📓

Theme 7: Control

  1. Planning and control 🎥 🖥

  2. The Truck Backer-Upper 🎥 🖥 📓

  3. Prediction and Planning Under Uncertainty 🎥 🖥

Theme 8: Optimisation

  • Optimisation (I) [from last year] 🎥 🖥

  • Optimisation (II) 🎥 🖥 📝

Miscellaneous

  • SSL for vision [A][B] 🎥 🖥

  • Low resource machine translation [A][B] 🎥 🖥

  • Lagrangian backprop, final project, and Q&A 🎥 🖥 📝



深度学习概要


猜您喜欢:

等你着陆!【GAN生成对抗网络】知识星球!

CVPR 2021专题1:GAN的改进

CVPR 2021 | GAN的说话人驱动、3D人脸论文汇总

CVPR 2021 | 图像转换 今如何?几篇GAN论文

【CVPR 2021】通过GAN提升人脸识别的遗留难题

CVPR 2021生成对抗网络GAN部分论文汇总

经典GAN不得不读:StyleGAN

最新最全20篇!基于 StyleGAN 改进或应用相关论文

超100篇!CVPR 2020最全GAN论文梳理汇总!

附下载 | 《Python进阶》中文版

附下载 | 经典《Think Python》中文版

附下载 | 《Pytorch模型训练实用教程》

附下载 | 最新2020李沐《动手学深度学习》

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 | 超100篇!CVPR 2020最全GAN论文梳理汇总!

附下载 |《计算机视觉中的数学方法》分享

浏览 39
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报