纽约大学:《深度学习》2021年课程全部在线可看!含中文课件

共 2346字,需浏览 5分钟

 ·

2021-11-19 16:14

↓↓↓点击关注,回复资料,10个G的惊喜


文章编辑 机器学习与推荐算法


Yann LeCun在纽约大学数据科学中心(CDS)主讲的《深度学习》
2021年春季课程现已全部在线可看!


该课程自2021年春季开始由Yann LeCun与Alfredo Canziani等共同执教。




CDS发布了Yann LeCun的深度学习(DS-GA 1008)课程的所有材料,包括带英文字幕教学视频、书面讲义、课件以及带有PyTorch实现的可执行Jupyter Notebooks。


课程关注深度学习和表示学习的最新技术,
重点关注有监督和无监督深度学习、嵌入方法、度量学习、
卷积和循环网,以及在计算机视觉、自然语言理解和语音识别方面的应用。
前提条件包括:DS-GA 1001数据科学入门或研究生水平的机器学习课程。

地址:https://cds.nyu.edu/deep-learning/


资源
  • YouTube视频:https://www.youtube.com/watch?v=mTtDfKgLm54

  • 官方中文版讲义:https://atcold.github.io/pytorch-Deep-Learning/zh/

  • 课件:https://github.com/Atcold/NYU-DLSP21

  • GitHub:hhttps://atcold.github.io/NYU-DLSP21/

  • Reddit论坛:https://www.reddit.com/r/NYU_DeepLearning/



授课老师:



目录内容:

Theme 1: Introduction

  • History and resources 🎥 🖥

  • Gradient descent and the backpropagation algorithm 🎥 🖥

  • Neural nets inference 🎥 📓

  • Modules and architectures 🎥

  • Neural nets training 🎥 🖥 📓📓

  • Homework 1: backprop

Theme 2: Parameters sharing

  • Recurrent and convolutional nets 🎥 🖥 📝

  • ConvNets in practice 🎥 🖥 📝

  • Natural signals properties and the convolution 🎥 🖥 📓

  • Recurrent neural networks, vanilla and gated (LSTM) 🎥 🖥 📓📓

  • Homework 2: RNN & CNN

Theme 3: Energy based models, foundations

  • Energy based models (I) 🎥 🖥

  • Inference for LV-EBMs 🎥 🖥

  • What are EBMs good for? 🎥

  • Energy based models (II) 🎥 🖥 📝

  • Training LV-EBMs 🎥 🖥

  • Homework 3: structured prediction

Theme 4: Energy based models, advanced

  • Energy based models (III) 🎥 🖥

  • Unsup learning and autoencoders 🎥 🖥

  • Energy based models (VI) 🎥 🖥

  • From LV-EBM to target prop to (any) autoencoder 🎥 🖥

  • Energy based models (V) 🎥 🖥

  • AEs with PyTorch and GANs 🎥 🖥 📓📓

Theme 5: Associative memories

  • Energy based models (V) 🎥 🖥

  • Attention & transformer 🎥 🖥 📓

Theme 6: Graphs

  • Graph transformer nets [A][B] 🎥 🖥

  • Graph convolutional nets (I) [from last year] 🎥 🖥

  • Graph convolutional nets (II) 🎥 🖥 📓

Theme 7: Control

  1. Planning and control 🎥 🖥

  2. The Truck Backer-Upper 🎥 🖥 📓

  3. Prediction and Planning Under Uncertainty 🎥 🖥

Theme 8: Optimisation

  • Optimisation (I) [from last year] 🎥 🖥

  • Optimisation (II) 🎥 🖥 📝

Miscellaneous

  • SSL for vision [A][B] 🎥 🖥

  • Low resource machine translation [A][B] 🎥 🖥

  • Lagrangian backprop, final project, and Q&A 🎥 🖥 📝



深度学习概要


推荐阅读

  1. 用Python学线性代数:自动拟合数据分布
  2. Python 用一行代码搞事情,机器学习通吃
  3. Github 上最大的开源算法库,还能学机器学习!
  4. JupyterLab 这插件太强了,Excel灵魂附体
  5. 终于把 jupyter notebook 玩明白了
  6. 一个超好用的 Python 标准库,666 
  7. 几百本编程中文书籍(含Python)持续更新


好文点个在看吧!
浏览 57
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报