纽约大学:《深度学习》2021年课程全部在线可看!含中文课件
↓↓↓点击关注,回复资料,10个G的惊喜
文章编辑 机器学习与推荐算法
Yann LeCun在纽约大学数据科学中心(CDS)主讲的《深度学习》 2021年春季课程现已全部在线可看!
该课程自2021年春季开始由Yann LeCun与Alfredo Canziani等共同执教。
CDS发布了Yann LeCun的深度学习(DS-GA 1008)课程的所有材料,包括带英文字幕教学视频、书面讲义、课件以及带有PyTorch实现的可执行Jupyter Notebooks。
课程关注深度学习和表示学习的最新技术, 重点关注有监督和无监督深度学习、嵌入方法、度量学习、 卷积和循环网,以及在计算机视觉、自然语言理解和语音识别方面的应用。 前提条件包括:DS-GA 1001数据科学入门或研究生水平的机器学习课程。 地址:https://cds.nyu.edu/deep-learning/ 资源
YouTube视频:https://www.youtube.com/watch?v=mTtDfKgLm54
官方中文版讲义:https://atcold.github.io/pytorch-Deep-Learning/zh/
课件:https://github.com/Atcold/NYU-DLSP21
GitHub:hhttps://atcold.github.io/NYU-DLSP21/
Reddit论坛:https://www.reddit.com/r/NYU_DeepLearning/
Theme 1: Introduction
History and resources 🎥 🖥
Gradient descent and the backpropagation algorithm 🎥 🖥
Neural nets inference 🎥 📓
Modules and architectures 🎥
Neural nets training 🎥 🖥 📓📓
Homework 1: backprop
Theme 2: Parameters sharing
Recurrent and convolutional nets 🎥 🖥 📝
ConvNets in practice 🎥 🖥 📝
Natural signals properties and the convolution 🎥 🖥 📓
Recurrent neural networks, vanilla and gated (LSTM) 🎥 🖥 📓📓
Homework 2: RNN & CNN
Theme 3: Energy based models, foundations
Energy based models (I) 🎥 🖥
Inference for LV-EBMs 🎥 🖥
What are EBMs good for? 🎥
Energy based models (II) 🎥 🖥 📝
Training LV-EBMs 🎥 🖥
Homework 3: structured prediction
Theme 4: Energy based models, advanced
Energy based models (III) 🎥 🖥
Unsup learning and autoencoders 🎥 🖥
Energy based models (VI) 🎥 🖥
From LV-EBM to target prop to (any) autoencoder 🎥 🖥
Energy based models (V) 🎥 🖥
AEs with PyTorch and GANs 🎥 🖥 📓📓
Theme 5: Associative memories
Energy based models (V) 🎥 🖥
Attention & transformer 🎥 🖥 📓
Theme 6: Graphs
Graph transformer nets [A][B] 🎥 🖥
Graph convolutional nets (I) [from last year] 🎥 🖥
Graph convolutional nets (II) 🎥 🖥 📓
Theme 7: Control
Planning and control 🎥 🖥
The Truck Backer-Upper 🎥 🖥 📓
Prediction and Planning Under Uncertainty 🎥 🖥
Theme 8: Optimisation
Optimisation (I) [from last year] 🎥 🖥
Optimisation (II) 🎥 🖥 📝
Miscellaneous
SSL for vision [A][B] 🎥 🖥
Low resource machine translation [A][B] 🎥 🖥
Lagrangian backprop, final project, and Q&A 🎥 🖥 📝
推荐阅读
用Python学线性代数:自动拟合数据分布 Python 用一行代码搞事情,机器学习通吃 Github 上最大的开源算法库,还能学机器学习! JupyterLab 这插件太强了,Excel灵魂附体 终于把 jupyter notebook 玩明白了 一个超好用的 Python 标准库,666 几百本编程中文书籍(含Python)持续更新
好文点个在看吧!