智能盘点,Yolo用于钢筋检测计数
共 2613字,需浏览 6分钟
·
2021-11-19 16:18
向AI转型的程序员都关注了这个号👇👇👇
机器学习AI算法工程 公众号:datayx
在工地现场,对于进场的钢筋车,验收人员需要对车上的钢筋进行现场人工点根,确认数量后钢筋车才能完成进场卸货。目前现场采用人工计数的方式,如图1-1中所示:
图1-1 钢筋点跟现场场景
上述过程繁琐、消耗人力且速度很慢(一般一车钢筋需要半小时,一次进场盘点需数个小时)。针对上述问题,希望通过手机拍照->目标检测计数->人工修改少量误检的方式(如图1-2)智能、高效的完成此任务:
主要难点:
(Main Difficulties:)
(1)精度要求高(High precision requirement )
钢筋本身价格较昂贵,且在实际使用中数量很大,误检和漏检都需要人工在大量的标记点中找出,所以需要精度非常高才能保证验收人员的使用体验。需要专门针对此密集目标的检测算法进行优化,另外,还需要处理拍摄角度、光线不完全受控,钢筋存在长短不齐、可能存在遮挡等情况。
(2)钢筋尺寸不一(Various dimensions of rebars)
钢筋的直径变化范围较大(12-32中间很多种类)且截面形状不规则、颜色不一,拍摄的角度、距离也不完全受控,这也导致传统算法在实际使用的过程中效果很难稳定。
(3)边界难以区分(Indistinguishable boundaries )
一辆钢筋车一次会运输很多捆钢筋(如图1-3),如果直接全部处理会存在边缘角度差、遮挡等问题效果不好,目前在用单捆处理+最后合计的流程,这样的处理过程就会需要对捆间进行分割或者对最终结果进行去重,难度较大。
基于钢筋进场现场的图片和标注,综合运用计算机视觉和机器学习/深度学习等技术,实现拍照即可完成钢筋点根任务,大幅度提升建筑行业关键物料的进场效率和盘点准确性,将建筑工人从这项极其枯燥繁重的工作中解脱出来。
项目代码,数据集 获取方式:
关注微信公众号 datayx 然后回复 钢筋盘点 即可获取。
使用方法
安装:
git clone https://github.com/tutan123/detect_steel_yolov3_darknet.git
cd detect_steel_darknetyolo
make -j
pip install -r requirements.txt
下载数据并解压,训练和测试图像分别放到train目录和test目录,目录结构如下:
- detect_steel_darknetyolo
train_labels.csv
train/
test/
生成训练的label文件
- python gen_labels.py
将label/文件夹下的文件拷贝到train/目录
- cp -r label/* train/
训练:
./get_weight.sh
./train.sh
预测:
python infer.py
单张照片预测:
./darknet detector test voc.data cfg/yolov3.cfg backup/yolov3_final.weights test/FF5AE15C.jpg
效果:
线上 0.96+
机器学习算法AI大数据技术
搜索公众号添加: datanlp
长按图片,识别二维码
阅读过本文的人还看了以下文章:
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx