【阿姆斯特丹博士论文】面向医学数据的深度学习数据派THU关注共 1082字,需浏览 3分钟 ·2024-07-04 17:39 来源:专知 本文约1000字,建议阅读5分钟 这篇论文重新审视了深度学习的基本组成部分,并评估了其在医学图像分析中的应用。 https://hdl.handle.net/11245.1/595f9cb7-1e44-4775-989f-f08e9897afe6 这篇论文重新审视了深度学习的基本组成部分,并评估了其在医学图像分析中的应用。论文指出,深度学习在该领域存在三大主要挑战:专家知识的整合、未标记数据的利用和预测不确定性的估计。论文的结构分为几个部分,分别解决这些挑战。 在第一部分,论文介绍了一种新的深度学习模型,该模型通过旋转-反射等变性整合专家知识,以提高医学影像任务的准确性和鲁棒性,特别是在组织病理学切片中转移性组织的检测上。所提出的模型优于传统的卷积神经网络(CNN)架构,并且对输入扰动表现出鲁棒性。接下来,论文探讨了如何激励深度学习社区关注现实世界的医学问题,提出了PCam数据集,该数据集来源于Camelyon16挑战赛。PCam数据集的结构类似于常见的深度学习基准测试,证明了在该数据集上的改进可以转化为在更大规模的Camelyon16基准测试上的改进。 第二部分探讨了通过对比预测编码(Contrastive Predictive Coding, CPC)进行自监督表示学习的好处,并提出了对比扰动预测编码(Contrastive Perturbative Predictive Coding, C2PC),通过整合特定的医学影像增强方法提升了CPC的性能。 第三部分解决了预测不确定性估计的挑战,这对高风险医学决策至关重要。论文介绍了一种新的变分推断方法,该方法利用多项式分布在量化潜变量上的特性。所提出的方法在不确定性估计和风险评估方面表现出与现有方法竞争的性能。 论文总结认为,通过解决上述挑战,深度学习可以更好地适用于医学影像任务。论文展示了专家知识可以有效地整合到深度学习模型中,利用未标记数据进行自监督学习可以提高模型性能,预测不确定性可以通过更灵活的变分推断方法得到改进。 浏览 45点赞 评论 收藏 分享 手机扫一扫分享分享 举报 评论图片表情视频评价全部评论推荐 X-DeepLearning面向高维稀疏数据场景的深度学习框架X-DeepLearning(简称XDL)是面向高维稀疏数据场景(如广告/推荐/搜索等)深度优化的一整套解决方案。现有开源框架在分布式性能、计算效率、水平扩展能力以及实时系统适配性的等方面往往难以满足深度学习中的噪声数据小白学视觉0OpenBioMed面向生物医学的 Python 深度学习工具包OpenBioMed是一个生物医学的Python深度学习工具包。OpenBioMed提供了多模态生物深度学习的深度学习路程人工智能与算法学习0深度学习的深度学习路程阿泽的学习笔记0OpenBioMed面向生物医学的 Python 深度学习工具包OpenBioMed是一个生物医学的Python深度学习工具包。OpenBioMed提供了多模态生物医学数据的处理接口,包括小分子、蛋白质和单细胞的分子结构、转录组学、知识图谱和生物医学文本数据。Op深度学习中的噪声数据AI算法与图像处理0【深度学习】深度学习的发展方向: 深度强化学习!机器学习初学者0面向深度学习研究人员的自然语言处理实例教程机器学习AI算法工程0MONAI医学成像深度学习框架MONAI是一个用于医学成像领域的深度学习框架,可在原生 PyTorch范式中开发医学成像训练工作流。特性灵活的多维医学成像数据预处理;组合与可移植的API,可轻松集成到现有工作流中;网络、评估指标等点赞 评论 收藏 分享 手机扫一扫分享分享 举报