面向深度学习研究人员的自然语言处理实例教程
向AI转型的程序员都关注了这个号???
人工智能大数据与深度学习 公众号:datayx
nlp-tutorial
nlp-tutorial是一个使用Pytorch/TensorFlow,学习自然语言处理的教程。大多数模型的代码行数少于100行。
旧的TensorFlow v1代码存档在存档文件夹中,适合初学者。
环境依赖:
Python 3.5+
Pytorch 1.0.0+
代码和数据集 获取方式
关注微信公众号 datayx 然后回复 NLP 即可获取。
AI项目体验地址 https://loveai.tech
1. Basic Embedding Model
1-1. NNLM(Neural Network Language Model) - Predict Next Word
Paper - A Neural Probabilistic Language Model(2003)
Colab - NNLM.ipynb
1-2. Word2Vec(Skip-gram) - Embedding Words and Show Graph
Paper - Distributed Representations of Words and Phrases and their Compositionality(2013)
Colab - Word2Vec.ipynb
1-3. FastText(Application Level) - Sentence Classification
Paper - Bag of Tricks for Efficient Text Classification(2016)
Colab - FastText.ipynb
2. CNN(Convolutional Neural Network)
2-1. TextCNN - Binary Sentiment Classification
Paper - Convolutional Neural Networks for Sentence Classification(2014)
TextCNN.ipynb
3. RNN(Recurrent Neural Network)
3-1. TextRNN - Predict Next Step
Paper - Finding Structure in Time(1990)
Colab - TextRNN.ipynb
3-2. TextLSTM - Autocomplete
Paper - LONG SHORT-TERM MEMORY(1997)
Colab - TextLSTM.ipynb
3-3. Bi-LSTM - Predict Next Word in Long Sentence
Colab - Bi_LSTM.ipynb
4. Attention Mechanism
4-1. Seq2Seq - Change Word
Paper - Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation(2014)
Colab - Seq2Seq.ipynb
4-2. Seq2Seq with Attention - Translate
Paper - Neural Machine Translation by Jointly Learning to Align and Translate(2014)
Colab - Seq2Seq(Attention).ipynb
4-3. Bi-LSTM with Attention - Binary Sentiment Classification
Colab - Bi_LSTM(Attention).ipynb
5. Model based on Transformer
5-1. The Transformer - Translate
Paper - Attention Is All You Need(2017)
Colab - Transformer.ipynb, Transformer(Greedy_decoder).ipynb
5-2. BERT - Classification Next Sentence & Predict Masked Tokens
Paper - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(2018)
Colab - BERT.ipynb
阅读过本文的人还看了以下文章:
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx
机大数据技术与机器学习工程
搜索公众号添加: datanlp
长按图片,识别二维码