傅立叶(JeanBaptiste Joseph Fourier,1768-1830),法国数学家、物理学家,法国科学院院士,提出傅立叶级数,并将其应用于热传导理论上。1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。其他贡献有:最早使用定积分符号,改进了代数方程符号法则的证法和实根个数的判别法等。傅立叶变换的基本思想首先由傅立叶提出,所以以其名字来命名以示纪念。
利用欧拉公式,可以将正余弦项合并,得到形式上更加简化的傅立叶级数。欧拉公式如下:将欧拉公式带入(1-3)式,得到负指数形式的傅里叶级数,这将方便导出傅里叶变换。其中系数Cn为:3. 傅里叶变换由于傅里叶级数只能分解周期信号,而在实际中遇到的信号通常是非周期信号,所以需要对傅立叶级数做些修改。非周期信号可以看成周期很大,甚至无穷大的信号,因此,对傅立叶级数的系数Cn乘以周期T,再关于T求极限,从而得到(1-4)式:将F(f)定义为非周期信号f(t)的傅里叶变换,也叫f(t)的频谱函数。需要注意到是,傅里叶变换也有使用条件,比如,信号f(t)的傅里叶变换存在的充分条件是在无线区间内满足绝对可积,即要求:同样以矩形脉冲为例,定义信号f(t)其时域波形如图:根据(1-4)式,得到f(t)的傅里叶变换(频谱): F(f)的图像如下所示:从上图可以看到,该非周期方波f(t)包含有从0到无穷大的所有频率分量,并且频率越高的分量,其幅度越小。与周期信号相比,非周期信号的频域分量是连续的,而周期信号的频域分量是以倍频的形式离散分布的。 参考文献[1] 郑君里, 杨为理, 应启珩. 信号与系统(上册、下册)[M]. 3版. 高等敎育出版社, 2011.[2] Bloomfield P. Fourier analysis of timeseries: an introduction[M]. John Wiley & Sons, 2004.[2] Fang F, Oosterlee C W. A novel pricingmethod for European options based on Fourier-cosine series expansions[J]. SIAMJournal on Scientific Computing, 2008, 31(2): 826-848.[3] Cherubini U, Della Lunga G, Mulinacci S, etal. Fourier transform methods in finance[M]. John Wiley & Sons, 2010.