拉普拉斯变换的本质意义(通俗易懂的好文)
点击下方卡片,关注“新机器视觉”公众号
视觉/图像重磅干货,第一时间送达
本文将从通俗的角度看待拉普拉斯变换。
发明者
奥列弗.赫维赛德,维多利亚时期英国人,全靠自学,听力残疾。很多人熟悉赫维赛德是因为MATLAB有一个赫维赛德(Heaviside)函数。
赫维赛德简化了麦克斯韦方程组:即变化的电场产生磁场,变化的磁场产生电场。让20个方程组便成了4个。
**赫维赛德另一个贡献就是我们今天要说的运算微积分-它可以将常微分方程转换为普通代数方程。**赫维赛德是怎么解微分方程的呢?他把微分、积分运算用一个简单的算子来代替。
也就是说,在某种算子下,积分和微分对应的是倒数关系,至于算子 p 代表什么,赫维赛德也没有多解释,在缺乏严密数学基础的情况下,人家直接放在文章就用了,还发表了。比如常见的一个二阶常微分方程,
如果用赫维赛德的微分算子变换一下,就变成了代数表达式。
赫维赛德之所以这么做,是因为他的“物理直觉”告诉他这么做,就是这么硬。这显然是一种开外挂的行为,因此也受到当时的主流数学家们们的攻讦,他们认为赫维赛德就是十足的“民科”,文章没什么理论依据,自己在那空想呢。当然,赫维赛德也不是弱鸡,科学家怼起人来,也是毫不含糊:“因为我不能理解消化过程就拒绝晚餐吗?不,只要我满意这个结果。”
好了,扯了那么远,有童鞋已经不耐心了:这些和拉普拉斯变换有什么关系?谜底就是:赫维赛德的微积分算子,就是拉普拉斯变换的前身。
傅里叶变换(轻量版拉普拉斯变换)
在说拉普拉斯变换以前,我们要先提一下傅里叶变换,这可以看成是轻量版的拉普拉斯变换。傅里叶变换说的是什么事?说的是自然界的很多现象,都可以用三角函数进行分解。
clc;clear;
h = animatedline;
xl=xlabel('cos(\omegat)');%
yl=ylabel('sin(\omegat)');%
grid on;
title('\omega = 1rad/s Made by J Pan')
axis([-1,1,-1,1]);
axis square;
N = 100;
t=linspace(0,2*pi,N);
w=1;
x=cos(w*t);
y=sin(w*t);
a = tic; % start timer
for k = 1:N
addpoints(h,x(k),y(k));
hold on
quiver(0,0,x(k)*1.1,y(k)*1.1)
b = toc(a); % check timer
if b > (1/90)
drawnow % update screen every 1/30 seconds
a = tic; % reset timer after updating
end
end
你能想象到很多曲线,都可以用这些不同频率,连续旋转的圆,通过线性叠加得到,而傅里叶定律,就是对这个结论的数学描述。
傅里叶定律说:只要一个函数满足如狄利赫里条件,都能分解为复指数函数之和,哪怕是如拉格朗日提到的带有棱角的方波函数。狄利赫里条件为:
其中可去间断点和跳跃间断点属于第一类间断点
于是就可以很好的解释拉格朗日和傅里叶之间的争论了——拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号,棱角处会有很小高频波动(吉布斯现象)。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅里叶也是对的。一个从数学家的角度,一个从工程师的角度。
拉普拉斯变换-原来就是这么回事
傅里叶变换能帮我们解决很多问题,一经问世后便受到广大工程师们的喜爱,因为它给人们提供了一扇不同的窗户来观察世界,从这个窗户来看,很多事情往往变得简单多了。但是,别忘了,傅里叶变换有一个很大局限性,那就是信号必须满足狄利赫里条件才行,特别是那个绝对可积的条件,一下子就拦截掉了一大批函数。比如函数 f(t)=t^2 就无法进行傅里叶变换。这点难度当然拿不到聪明的数学家们,他们想到了一个绝佳的主意:把不满足绝对的可积的函数乘以一个快速衰减的函数,这样在趋于无穷 时原函数也衰减到零了,从而满足绝对可积。
这里我要补充一下,不是为了保证一直为衰减,指数函数,要衰减,在负半轴也是衰减的,要增加,在正负半轴都是增加的。是因为在我们关心的系统中,不对时间的负半轴作分析。因此,我们更多使用单边的拉普拉斯变换,而不是使用双边的拉普拉斯变换,这样的系统称之为因果系统不需要考虑 t=0 时的系统初始条件。
我知道大部分人前面的数学推导没什么兴趣,接下来就是放彩蛋的时刻了,很多童鞋会说不管傅里叶变换或者拉普拉斯变换是什么细节,你能说点有意思的,让人能记忆深刻的信息吗?
clc;clear;
h = animatedline;
h1=gcf;
view(3);
xl=xlabel('cos(\omegat)');%
yl=ylabel('sin(\omegat)');%
zl=zlabel('t');%
set(xl,'Rotation',30);%
set(yl,'Rotation',-30);%
grid on;
title('\omega = 1rad/s Made by J Pan')
axis([-1,1,-1,1,0,4*pi])
N = 200;
t=linspace(0,4*pi,N);
w=1;
x=cos(w*t);
y=sin(w*t);
a = tic; % start timer
for k = 1:N
addpoints(h,x(k),y(k),t(k));
hold on
line([0 x(k)],[0 y(k)],[t(k) t(k)],'Color','red')
b = toc(a); % check timer
if b > (1/90)
drawnow % update screen every 1/30 seconds
a = tic; % reset timer after updating
end
end
clc;clear;
h = animatedline;
h1=gcf;
view(3);
xl=xlabel('cos(\omegat)');%
yl=ylabel('sin(\omegat)');%
zl=zlabel('t');%
set(xl,'Rotation',30);%
set(yl,'Rotation',-30);%
grid on;
title('\omega = 1rad/s Made by J Pan')
axis([-1,1,-1,1,0,4*pi])
N = 200;
t=linspace(0,4*pi,N);
w=1;sig=-0.2;
x=exp(sig*t).*cos(w*t);
y=exp(sig*t).*sin(w*t);
a = tic; % start timer
for k = 1:N
addpoints(h,x(k),y(k),t(k));
hold on
line([0 x(k)],[0 y(k)],[t(k) t(k)],'Color','red')
b = toc(a); % check timer
if b > (1/90)
drawnow % update screen every 1/30 seconds
a = tic; % reset timer after updating
end
end
螺旋曲线和衰减函数的乘积:一个半径不断减小的螺旋曲线。从不同的平面看,就是不断衰减的正弦或者余弦曲线,从复平面来看,是一个半径不断减小的圆。
总结一下:傅里叶变换是将函数分解到频率不同、幅值恒为1的单位圆上;拉普拉斯变换是将函数分解到频率幅值都在变化的圆上。因为拉普拉斯变换的基有两个变量,因此更灵活,适用范围更广。
本文大量引用了:https://zhuanlan.zhihu.com/p/40783304
本文仅做学术分享,如有侵权,请联系删文。