文档级关系抽取方法,EMNLP 2020 paper
向AI转型的程序员都关注了这个号👇👇👇
人工智能大数据与深度学习 公众号:datayx
目前大多数关系抽取方法抽取单个实体对在某个句子内反映的关系,在实践中受到不可避免的限制:在真实场景中,大量的关系事实是以多个句子表达的。文档中的多个实体之间,往往存在复杂的相互关系。
以下图为例,就包括了文章中的两个关系事实(这是从文档标注的19个关系事实中采样得到的),其中涉及这些关系事实的命名实体用蓝色着色,其它命名实体用下划线标出。为了识别关系事实(Riddarhuset,country,Sweden),必须首先从句子4中抽取Riddarhuset位于Stockholm的关系事实,然后从句子1确定Stockholm是Sweden的首都,以及Sweden是一个国家,最后从这些事实推断出Riddarhuset的主权国家是瑞典。
该过程需要对文档中的多个句子进行阅读和推理,这显然超出了句子级关系抽取方法的能力范围。根据从维基百科采样的人工标注数据的统计表明,至少40%的实体关系事实只能从多个句子联合获取。因此,有必要将关系抽取从句子级别推进到文档级别。
文档级关系抽取数据集DocRED
2019年的ACL上提出了一个关系抽取数据集DocRED,为文档级关系抽取的研究提供了一个非常好的标注数据集,今年的ACL上,就有论文使用DocRED作为语料,提出了文档级关系抽取的模型。
DocRED包含对超过5000篇Wikipedia文章的标注,包括96种关系类型、143,375个实体和56,354个关系事实。这在规模上超越了以往的同类精标注数据集。与传统的基于单句的关系抽取数据集相比,不同之处在于,DocRED中超过40%的关系事实只能从多个句子中联合抽取,因此需要模型具备较强的获取和综合文章中信息的能力,尤其是抽取跨句关系的能力。
图神经网络
相比较传统的CNN和RNN,图神经网络能够更好地在文档层面上建立实体之间的联系,从而实现文档级的关系推理。因此在解决文档级实体关系抽取任务中,图神经网络的主流的方法。
图网络结构的分类
在使用图神经网络时,图的构造是关键的一个环节,根据是否需要区分图中边的类型,可以将图分为异质图和同质图。
异质网络图
这种图定义了不同类型的边,边的表示方式因类型不同而有所区别,主要的代表工作是GCNN、EOG。
同质网络图 (latent structure)
把所有的边当作同质关系进行处理,利用attention或者其他的方式自动进行区分,主要的代表是LSR。
EMNLP 2020 paper:
Double Graph Based Reasoning for Document-level Relation Extraction
https://arxiv.org/abs/2009.13752
代码 获取方式:
分享本文到朋友圈
关注微信公众号 datayx 然后回复 抽取 即可获取。
AI项目体验地址 https://loveai.tech
单肩包/双肩包/斜挎包/手提包/胸包/旅行包/上课书包 /个性布袋等各式包饰挑选
https://shop585613237.taobao.com/
本文提出了一种双图的图聚合推理网络(GAIN)。GAIN首先构造一个异构提及级别图(hMG)来建模文档中不同提及之间的复杂交互。在此基础上,我们提出了一种新的路径推理机制来推断实体之间的关系。在公共数据集DocRED上的实验表明,GAIN比以前的最新技术有了显著的性能改进(F1上为2.85)。
阅读过本文的人还看了以下文章:
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx
机大数据技术与机器学习工程
搜索公众号添加: datanlp
长按图片,识别二维码