深度强化学习之:PPO训练红白机1942

共 21791字,需浏览 44分钟

 ·

2021-03-29 11:08

本公众号MyEncyclopedia定期发布AI,算法,工程类深度和前沿文章。欢迎关注,收藏和点赞。本系列将从原理和代码来循序渐进讲解强化深度学习。


本篇是深度强化学习动手系列文章,自MyEncyclopedia公众号文章深度强化学习之:DQN训练超级玛丽闯关发布后收到不少关注和反馈,这一期,让我们实现目前主流深度强化学习算法PPO来打另一个红白机经典游戏1942。

相关文章链接如下:

强化学习开源环境集

视频论文解读:PPO算法

视频论文解读:组合优化的强化学习方法

解读TRPO论文,深度强化学习结合传统优化方法

解读深度强化学习基石论文:函数近似的策略梯度方法


NES 1942 环境安装

红白机游戏环境可以由OpenAI Retro来模拟,OpenAI Retro还在 Gym 集成了其他的经典游戏环境,包括Atari 2600,GBA,SNES等。

不过,受到版权原因,除了一些基本的rom,大部分游戏需要自行获取rom。

环境准备部分相关代码如下

pip install gym-retro
python -m retro.import /path/to/your/ROMs/directory/

OpenAI Gym 输入动作类型

在创建 retro 环境时,可以在retro.make中通过参数use_restricted_actions指定 action space,即按键的配置。

env = retro.make(game='1942-Nes', use_restricted_actions=retro.Actions.FILTERED)

可选参数如下,FILTERED,DISCRETE和MULTI_DISCRETE 都可以指定过滤的动作,过滤动作需要通过配置文件加载。

class Actions(Enum):
    """
    Different settings for the action space of the environment
    """

    ALL = 0  #: MultiBinary action space with no filtered actions
    FILTERED = 1  #: MultiBinary action space with invalid or not allowed actions filtered out
    DISCRETE = 2  #: Discrete action space for filtered actions
    MULTI_DISCRETE = 3  #: MultiDiscete action space for filtered actions

DISCRETE和MULTI_DISCRETE 是 Gym 里的 Action概念,它们的基类都是gym.spaces.Space,可以通过 sample()方法采样,下面具体一一介绍。

  • Discrete:对应一维离散空间,例如,Discrete(n=4) 表示 [0, 3] 范围的整数。
from gym.spaces import Discrete
space = Discrete(4)
print(space.sample())

输出是

3


  • Box:对应多维连续空间,每一维的范围可以用 [low,high] 指定。举例,Box(low=-1.0, high=2, shape=(3, 4,), dtype=np.float32) 表示 shape 是 [3, 4],每个范围在 [-1, 2] 的float32型 tensor。
from gym.spaces import Box
import numpy as np
space = Box(low=-1.0, high=2.0, shape=(34), dtype=np.float32)
print(space.sample())

输出是

[[-0.7538084   0.96901214  0.38641307 -0.05045208]
 [-0.85486996  1.3516271   0.3222616   1.2540635 ]
 [-0.29908678 -0.8970335   1.4869047   0.7007356 ]]


  • MultiBinary: 0或1的多维离散空间。例如,MultiBinary([3,2]) 表示 shape 是3x2的0或1的tensor。
from gym.spaces import MultiBinary
space = MultiBinary([3,2])
print(space.sample())

输出是

[[1 0]
 [1 1]
 [0 0]]


  • MultiDiscrete:多维整型离散空间。例如,MultiDiscrete([5,2,2]) 表示三维Discrete空间,第一维范围在 [0-4],第二,三维范围在[0-1]。
from gym.spaces import MultiDiscrete
space = MultiDiscrete([5,2,2])
print(space.sample())

输出是

[2 1 0]


  • Tuple:组合成 tuple 复合空间。举例来说,可以将 Box,Discrete,Discrete组成tuple 空间:Tuple(spaces=(Box(low=-1.0, high=1.0, shape=(3,), dtype=np.float32), Discrete(n=3), Discrete(n=2)))
from gym.spaces import *
import numpy as np
space = Tuple(spaces=(Box(low=-1.0, high=1.0, shape=(3,), dtype=np.float32), Discrete(n=3), Discrete(n=2)))
print(space.sample())

输出是

(array([ 0.22640526,  0.75286865, -0.6309239 ], dtype=float32), 0, 1)


  • Dict:组合成有名字的复合空间。例如,Dict({'position':Discrete(2), 'velocity':Discrete(3)})
from gym.spaces import *
space = Dict({'position':Discrete(2), 'velocity':Discrete(3)})
print(space.sample())

输出是

OrderedDict([('position', 1), ('velocity', 1)])

NES 1942 动作空间配置

了解了 gym/retro 的动作空间,我们来看看1942的默认动作空间

env = retro.make(game='1942-Nes')
print("The size of action is: ", env.action_space.shape)
The size of action is:  (9,)

表示有9个 Discrete 动作,包括 start, select这些控制键。

从训练1942角度来说,我们希望指定最少的有效动作取得最好的成绩。根据经验,我们知道这个游戏最重要的键是4个方向加上 fire 键。限定游戏动作空间,官方的做法是在创建游戏环境时,指定预先生成的动作输入配置文件。但是这个方式相对麻烦,我们采用了直接指定按键的二进制表示来达到同样的目的,此时,需要设置 use_restricted_actions=retro.Actions.FILTERED。

下面的代码限制了6种按键,并随机play。

action_list = [
    # No Operation
    [000000000000],
    # Left
    [000000100000],
    # Right
    [000000010000],
    # Down
    [000001000000],
    # Up
    [000010000000],
    # B
    [100000000000],
]

def random_play(env, action_list, sleep_seconds=0.01):
    env.viewer = None
    state = env.reset()
    score = 0
    for j in range(10000):
        env.render()
        time.sleep(sleep_seconds)
        action = np.random.randint(len(action_list))

        next_state, reward, done, _ = env.step(action_list[action])
        state = next_state
        score += reward
        if done:
            print("Episode Score: ", score)
            env.reset()
            break
            
env = retro.make(game='1942-Nes', use_restricted_actions=retro.Actions.FILTERED)
random_play(env, action_list)

来看看其游戏效果,全随机死的还是比较快。

 

图像输入处理

一般对于通过屏幕像素作为输入的RL end-to-end训练来说,对图像做预处理很关键。因为原始图像较大,一方面我们希望能尽量压缩图像到比较小的tensor,另一方面又要保证关键信息不丢失,比如子弹的图像不能因为图片缩小而消失。另外的一个通用技巧是将多个连续的frame合并起来组成立体的frame,这样可以有效表示连贯动作。

下面的代码通过 pipeline 将游戏每帧原始图像从shape (224, 240, 3) 转换成 (4, 84, 84),也就是原始的 width=224,height=240,rgb=3转换成 width=84,height=240,stack_size=4的黑白图像。具体 pipeline为

  1. MaxAndSkipEnv:每两帧过滤一帧图像,减少数据量。

  2. FrameDownSample:down sample 图像到指定小分辨率 84x84,并从彩色降到黑白。

  3. FrameBuffer:合并连续的4帧,形成 (4, 84, 84) 的图像输入

def build_env():
    env = retro.make(game='1942-Nes', use_restricted_actions=retro.Actions.FILTERED)
    env = MaxAndSkipEnv(env, skip=2)
    env = FrameDownSample(env, (1-1-11))
    env = FrameBuffer(env, 4)
    env.seed(0)
    return env

观察图像维度变换

env = retro.make(game='1942-Nes', use_restricted_actions=retro.Actions.FILTERED)
print("Initial shape: ", env.observation_space.shape)

env = build_env(env)
print("Processed shape: ", env.observation_space.shape)

确保shape 从 (224, 240, 3) 转换成 (4, 84, 84)

Initial shape:  (224, 240, 3)
Processed shape:  (4, 84, 84)

FrameDownSample实现如下,我们使用了 cv2 类库来完成黑白化和图像缩放

class FrameDownSample(ObservationWrapper):
    def __init__(self, env, exclude, width=84, height=84):
        super(FrameDownSample, self).__init__(env)
        self.exclude = exclude
        self.observation_space = Box(low=0,
                                     high=255,
                                     shape=(width, height, 1),
                                     dtype=np.uint8)
        self._width = width
        self._height = height

    def observation(self, observation):
        # convert image to gray scale
        screen = cv2.cvtColor(observation, cv2.COLOR_RGB2GRAY)

        # crop screen [up: down, left: right]
        screen = screen[self.exclude[0]:self.exclude[2], self.exclude[3]:self.exclude[1]]

        # to float, and normalized
        screen = np.ascontiguousarray(screen, dtype=np.float32) / 255

        # resize image
        screen = cv2.resize(screen, (self._width, self._height), interpolation=cv2.INTER_AREA)
        return screen

MaxAndSkipEnv,每两帧过滤一帧

class MaxAndSkipEnv(Wrapper):
    def __init__(self, env=None, skip=4):
        super(MaxAndSkipEnv, self).__init__(env)
        self._obs_buffer = deque(maxlen=2)
        self._skip = skip

    def step(self, action):
        total_reward = 0.0
        done = None
        for _ in range(self._skip):
            obs, reward, done, info = self.env.step(action)
            self._obs_buffer.append(obs)
            total_reward += reward
            if done:
                break
        max_frame = np.max(np.stack(self._obs_buffer), axis=0)
        return max_frame, total_reward, done, info

    def reset(self):
        self._obs_buffer.clear()
        obs = self.env.reset()
        self._obs_buffer.append(obs)
        return obs

FrameBuffer,将最近的4帧合并起来

class FrameBuffer(ObservationWrapper):
    def __init__(self, env, num_steps, dtype=np.float32):
        super(FrameBuffer, self).__init__(env)
        obs_space = env.observation_space
        self._dtype = dtype
        self.observation_space = Box(low=0, high=255, shape=(num_steps, obs_space.shape[0], obs_space.shape[1]), dtype=self._dtype)

    def reset(self):
        frame = self.env.reset()
        self.buffer = np.stack(arrays=[frame, frame, frame, frame])
        return self.buffer

    def observation(self, observation):
        self.buffer[:-1] = self.buffer[1:]
        self.buffer[-1] = observation
        return self.buffer

最后,visualize 处理后的图像,同样还是在随机play中,确保关键信息不丢失

def random_play_preprocessed(env, action_list, sleep_seconds=0.01):
    import matplotlib.pyplot as plt

    env.viewer = None
    state = env.reset()
    score = 0
    for j in range(10000):
        time.sleep(sleep_seconds)
        action = np.random.randint(len(action_list))

        plt.imshow(state[-1], cmap="gray")
        plt.title('Pre Processed image')
        plt.pause(sleep_seconds)

        next_state, reward, done, _ = env.step(action_list[action])
        state = next_state
        score += reward
        if done:
            print("Episode Score: ", score)
            env.reset()
            break

matplotlib 动画输出

 

CNN Actor & Critic

Actor 和 Critic 模型相同,输入是 (4, 84, 84) 的图像,输出是 [0, 5] 的action index。

class Actor(nn.Module):
    def __init__(self, input_shape, num_actions):
        super(Actor, self).__init__()
        self.input_shape = input_shape
        self.num_actions = num_actions

        self.features = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(3264, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(6464, kernel_size=3, stride=1),
            nn.ReLU()
        )

        self.fc = nn.Sequential(
            nn.Linear(self.feature_size(), 512),
            nn.ReLU(),
            nn.Linear(512, self.num_actions),
            nn.Softmax(dim=1)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        dist = Categorical(x)
        return dist

PPO核心代码

先计算 ,这里采用了一个技巧,对 取 log,相减再取 exp,这样可以增强数值稳定性。

dist = self.actor_net(state)
new_log_probs = dist.log_prob(action)
ratio = (new_log_probs - old_log_probs).exp()
surr1 = ratio * advantage

surr1 对应PPO论文中的

 

然后计算 surr2,对应 中的 clip 部分,clip可以由 torch.clamp 函数实现。 则对应 actor_loss。

surr2 = torch.clamp(ratio, 1.0 - self.clip_param, 1.0 + self.clip_param) * advantage
actor_loss = - torch.min(surr1, surr2).mean()

 

最后,计算总的 loss ,包括 actor_loss,critic_loss 和 policy的 entropy。

entropy = dist.entropy().mean()

critic_loss = (return_ - value).pow(2).mean()
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy 



上述完整代码如下

for _ in range(self.ppo_epoch):
    for state, action, old_log_probs, return_, advantage in sample_batch():
        dist = self.actor_net(state)
        value = self.critic_net(state)

        entropy = dist.entropy().mean()
        new_log_probs = dist.log_prob(action)

        ratio = (new_log_probs - old_log_probs).exp()
        surr1 = ratio * advantage
        surr2 = torch.clamp(ratio, 1.0 - self.clip_param, 1.0 + self.clip_param) * advantage

        actor_loss = - torch.min(surr1, surr2).mean()
        critic_loss = (return_ - value).pow(2).mean()

        loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy

        # Minimize the loss
        self.actor_optimizer.zero_grad()
        self.critic_optimizer.zero_grad()
        loss.backward()
        self.actor_optimizer.step()
        self.critic_optimizer.step()

补充一下 GAE 的计算,advantage 根据公式

可以转换成如下代码

def compute_gae(self, next_value):
    gae = 0
    returns = []
    values = self.values + [next_value]
    for step in reversed(range(len(self.rewards))):
        delta = self.rewards[step] + self.gamma * values[step + 1] * self.masks[step] - values[step]
        gae = delta + self.gamma * self.tau * self.masks[step] * gae
        returns.insert(0, gae + values[step])
    return returns

外层 Training 代码

外层调用代码基于随机 play 的逻辑,agent.act()封装了采样和 forward prop,agent.step() 则封装了 backprop 和参数学习迭代的逻辑。

for i_episode in range(start_epoch + 1, n_episodes + 1):
    state = env.reset()
    score = 0
    timestamp = 0

    while timestamp < 10000:
        action, log_prob, value = agent.act(state)
        next_state, reward, done, info = env.step(action_list[action])
        score += reward
        timestamp += 1

        agent.step(state, action, value, log_prob, reward, done, next_state)
        if done:
            break
        else:
            state = next_state

训练结果

让我们来看看学习的效果吧,注意我们的飞机学到了一些关键的技巧,躲避子弹;飞到角落尽快击毙敌机;一定程度预测敌机出现的位置并预先走到位置。




著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
浏览 158
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报