深度学习的发展方向: 深度强化学习!
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
作者:莫凡&马晶敏,上海交通大学
转载自:Datawhale
一、深度学习的反思
二、强化学习原理
掌握了状态信息,游戏里的马里奥开始跃跃欲试,准备做出反应了。强化学习也一样,我们将s(t)作为智能体的输入,智能体会略加思索,接着就能做出“动作”。这里的动作,就是前面介绍的第四个重要概念。智能体能做出哪些动作呢?这和具体的场景有关,譬如在马里奥游戏中,动作就是指“顶蘑菇”或者“踩乌龟”,一般记为a(t)。
当然,除了这两大方向,强化学习还有其它的脑洞方向,譬如基于模型(Model-Based)的强化学习,不过由于成本和难度较高,用得比较少。而这两大方向都各自包含了大量的具体实现算法,即使方向相同,各个算法在细节上仍然有很大差异。
三、深度学习与强化学习的结合
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。 下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。 下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。 交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论