一文看懂从 RNN 到 LSTM

这是在看了台大李宏毅教授的深度学习视频之后的一点总结和感想。看完介绍的第一部分 RNN 尤其 LSTM 的介绍之后,整个人醍醐灌顶。本篇博客就是对视频的一些记录加上了一些个人的思考。
0. 从 RNN 说起
循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同的含义,RNN 就能够很好地解决这类问题。1. 普通 RNN
先简单介绍一下一般的 RNN。其主要形式如下图所示(图片均来自台大李宏毅教授的PPT):





2. LSTM
2.1 什么是 LSTM
长短期记忆(Long short-term memory, LSTM)是一种特殊的 RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的 RNN,LSTM 能够在更长的序列中有更好的表现。LSTM 结构(图右)和普通 RNN 的主要输入输出区别如下所示。









2.2 深入 LSTM 结构
下面具体对 LSTM 的内部结构来进行剖析。首先使用 LSTM 的当前输入










下面开始进一步介绍这四个状态在 LSTM 内部的使用。(敲黑板)



LSTM 内部主要有三个阶段:1. 忘记阶段。这个阶段主要是对上一个节点传进来的输入进行选择性忘记。简单来说就是会 “忘记不重要的,记住重要的”。具体来说是通过计算得到的





将上面两步得到的结果相加,即可得到传输给下一个状态的3. 输出阶段。这个阶段将决定哪些将会被当成当前状态的输出。主要是通过。也就是上图中的第一个公式。




3. 总结
以上,就是 LSTM 的内部结构。通过门控状态来控制传输状态,记住需要长时间记忆的,忘记不重要的信息;而不像普通的 RNN 那样只能够“呆萌”地仅有一种记忆叠加方式。对很多需要“长期记忆”的任务来说,尤其好用。但也因为引入了很多内容,导致参数变多,也使得训练难度加大了很多。因此很多时候我们往往会使用效果和 LSTM 相当但参数更少的 GRU 来构建大训练量的模型。— 完 —猜你喜欢
评论