单目、双目及深度相机比较

共 1315字,需浏览 3分钟

 ·

2021-11-11 13:28


点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达



1.mono


优点:
结构简单,成本低,便于标定和识别
缺点:
在单张图片里,无法确定一个物体的真实大小。它可能是一个很大但很远的物体,也可能是一个很近很小的物体。通过相机的运动形成视差,可以测量物体相对深度。但是单目SLAM估计的轨迹和地图将与真实的轨迹和地图相差一个因子,也就是尺度(scale),单凭图像无法确定这个真实尺度,所以称尺度不确定性。
基于单目手眼相机和激光测距仪,提出了一种尺寸未知的空间矩形平面的位姿测量算法

单目视觉测量的原理和实现方法,得出采用线激光器、单CCD 相机、小孔成像和激光面约束模型的单目视觉测量方法。


2.stereo


优点:
基线距离越大,能够测量的距离就越远;并且可以运用到室内和室外。
缺点:
配置与标定较为复杂
深度量程和精度受到双目基线与分辨率限制
视差计算非常消耗计算资源,需要GPU/FPGA设备加速
用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。

3.RGB-D


通过结构光或ToF(time of fly)的物理方法测量物体深度信息。
典型代表Kinect/xtion pro/RealSense。
测量范围窄,噪声大,视野小,易受日光干扰,无法测量透射材质等问题,主要用在室内,室外很难应用。
所谓的深度相机主要用来三维成像,和距离的测量。

下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 62
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报