深度学习实现缺陷检测
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
1、A fast and robust convolutional neural network-based defect detection model in product quality control
由于使用分类方式,准确率较为高
由于滑窗遍历,速度慢
2、Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network(基于深度卷积网络的接触网支架紧固件缺陷自动检测)
3、Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model(基于多尺度卷积消噪自编码网络模型的织物疵点自动检测)
4、An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces
5、Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks
6、Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types
7、A Surface Defect Detection Method Based on Positive Samples
8、Segmentation-based deep-learning approach for surface-defect detection
9、SDD-CNN: Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection(小数据驱动卷积神经网络在轧辊微小缺陷检测中的应用)
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论