R语言朴素贝叶斯Naive Bayes分类Iris鸢尾花和HairEyeColor学生性别和眼睛头发颜色数据

共 2641字,需浏览 6分钟

 ·

2023-01-07 02:21

全文链接:http://tecdat.cn/?p=31070


最近,在贝叶斯统计实验中,我们向客户演示了用R的朴素贝叶斯分类器可以提供的内容点击文末“阅读原文”获取完整代码数据


这个实用的例子介绍了使用R统计环境的朴素贝叶斯模型。它不假设先验知识。

相关视频



我们的步骤是:

1.启动R

2.探索Iris鸢尾花数据集

3.构造朴素贝叶斯分类器

4.理解朴素贝叶斯

探索Iris数据集

在这个实践中,我们将探索经典的“Iris”数据集。

Iris数据集有150个数据点和5个变量。每一个数据点包含一个特定的花样本,并给出4种花的测量值。

任务是用花的特征与种类一起构建一个分类器,从4种对花的观测量中预测花的种类。

要将Iris数据集放到您的R会话中,请执行以下操作:

data(iris)

查看数据

pairs(iris[1:4],main="

命令创建了一个散点图。类决定数据点的颜色。从中可以看出,setosa花的花瓣比其他两种都要小。


点击标题查阅往期内容


R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间


左右滑动查看更多


01

02

03

04



提供数据摘要

summary(iris)

构造朴素贝叶斯分类器

我们构建一个朴素的贝叶斯分类器。

(1)加载到工作区

(2)构建朴素贝叶斯分类器,

(3)对数据进行一些预测,执行以下操作:

library(e1071)  
classifier<-naiveBayes(iris[,1:4], iris[,5])
table(predict(classifier, iris[,-5]), iris[,5], dnn=list('predicted','actual'))

正如你应该看到的那样,分类器在分类方面做得很好。

这给出了数据中的类分布:类的先验分布。(“先验”是拉丁语,表示“从前开始”)。

由于这里的预测变量都是连续的,朴素贝叶斯分类器为每个预测变量生成三个Giaussian(正态分布)分布:一个用于类变量的每个值。

您将看到3个依赖于类的高斯分布的平均值(第一列)和标准偏差(第二列):

绘制成图:

plot(function(x) dnorm, 0, 8, col=2, main="3种不同物种的花瓣长度分布")
curve(

值得注意的是,setosa irises(蓝色曲线)花瓣较小(平均值=1.462),花瓣长度变化较小(唐氏偏差仅为0.1736640)。

理解朴素贝叶斯

在这个问题中,您必须计算出对于一些离散数据,朴素贝叶斯模型的参数应该是什么。

该数据集被称为HairEyeColor,有三个变量:性别、眼睛和头发,给出了某大学592名学生的这3个变量的值。首先看一下数字:

您还可以将其绘制为“马赛克”图,它使用矩形来表示数据中的数字:

你在这里的工作是为一个朴素贝叶斯分类器计算参数,它试图从另外两个变量中预测性别。参数应该使用最大似然性来估计。为了节省手工计算的繁琐时间,下面是如何使用Edge.table来获取所需的计数

naiveBayes(Sex ~

预测



点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言朴素贝叶斯Naive Bayes分类Iris鸢尾花和HairEyeColor学生性别和眼睛头发颜色数据》。


点击标题查阅往期内容

R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间
R语言Gibbs抽样的贝叶斯简单线性回归仿真分析
python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断
R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例
R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数
R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据
R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归
Python贝叶斯回归分析住房负担能力数据集
R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析
Python用PyMC3实现贝叶斯线性回归模型
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言Gibbs抽样的贝叶斯简单线性回归仿真分析
R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言贝叶斯线性回归和多元线性回归构建工资预测模型
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言stan进行基于贝叶斯推断的回归模型
R语言中RStan贝叶斯层次模型分析示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较
R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型
R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计



浏览 26
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报