特征点的检测与匹配--系统总结
小白学视觉
共 5405字,需浏览 11分钟
·
2021-06-19 15:17
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转自|新机器视觉
特征点:检测子(给一副图像找到特征点的位置)+描述子(特征向量,用于特征匹配)
一、图像特征介绍
1、图像特征点的应用
相机标定:棋盘格角点阴影格式固定,不同视角检测到点可以得到匹配结果,标定相机内参
图像拼接:不同视角匹配恢复相机姿态
稠密重建:间接使用特征点作为种子点扩散匹配得到稠密点云
场景理解:词袋方法,特征点为中心生成关键词袋(关键特征)进行场景识别
End
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论