开源真实场景图像检测数据集汇总
共 2735字,需浏览 6分钟
·
2022-03-11 03:12
极市导读
本文汇总了九个图像检测相关的真实场景数据集,附有下载链接。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
RMFD口罩遮挡人脸数据集
数据集下载地址:http://m6z.cn/61z9Fv
当前大多数高级人脸识别方法都是基于深度学习而设计的,深度学习取决于大量人脸样本。但是,目前尚没有公开可用的口罩遮挡人脸识别数据集。为此,这项工作提出了三种类型的口罩遮挡人脸数据集,包括口罩遮挡人脸检测数据集(MFDD),真实口罩遮挡人脸识别数据集(RMFRD)和模拟口罩遮挡人脸识别数据集(SMFRD)。基于这些数据集,可以开发口罩遮挡人脸的各种应用。本项目开发的多粒度口罩遮挡人脸识别模型可达到95%的准确性,超过了行业报告的结果。
GTSRB德国交通标志数据集
数据集下载地址:http://m6z.cn/5wJJLA
德国交通标志基准测试是在 2011 年国际神经网络联合会议 (IJCNN) 上举办的多类单图像分类挑战赛。我们诚邀相关领域的研究人员参与:该比赛旨在参与者无需特殊领域知识。我们的基准测试具有以下属性:
单图像、多类分类问题 40多个分类 总共超过 50,000 张图片 逼真的大型数据库
VOC2005车辆数据集
数据集下载地址:http://m6z.cn/5U2X4u
该数据集中含有自行车、摩托车、汽车、货车的图像数据,可用于CNN模型以实现车辆识别和车辆分类,其中自行车、摩托车、汽车数据来自2005 PASCAL视觉类挑战赛(VOC2005)所使用的数据的筛选处理结果,货车图片来自网络收集,后期通过筛选处理得到。在本数据中,训练数据集与测试数据集占比约为5:1。
Winegrape检测数据集
数据集下载地址:http://m6z.cn/5TikF9
WGISD(Wine Grape Instance Segmentation Dataset)是为了提供图像和注释来研究对象检测和实例分割,用于葡萄栽培中基于图像的监测和现场机器人技术。它提供了来自五种不同葡萄品种的实地实例。这些实例显示了葡萄姿势、光照和焦点的变化,包括遗传和物候变化,如形状、颜色和紧实度。可能的用途包括放宽实例分割问题:分类(图像中是否有葡萄?)、语义分割(图像中的“葡萄像素”是什么?)、对象检测(图像中的葡萄在哪里?)、和计数(每个簇有多少浆果?)。
全球小麦检测数据集
数据集下载地址:http://m6z.cn/5wJK64
检测小麦穗是一项重要任务,可以估计相关性状,包括穗种群密度和穗特征,如卫生状况、大小、成熟阶段和芒的存在。本数据集包含 4,700 张高分辨率 RGB 图像和 190,000 个标记的小麦头,这些小麦头采集自世界各地不同生长阶段的不同基因型的多个国家。
坑洼检测数据集
数据集下载地址:http://m6z.cn/5wJJTa
本数据集汇总了700个在坑洼处带有3K +注释的图像,用于从道路图像中检测坑洼,检测道路地形和坑洼。
Linkopings交通标志数据集
数据集下载地址:http://m6z.cn/68ldS0
通过记录超过 350 公里的瑞典高速公路和城市道路的序列,创建了一个数据集。一个 1.3 兆像素的彩色摄像机,一个点灰色变色龙,被放置在一辆汽车的仪表板上,从前窗向外看。摄像头略微指向右侧,以便尽可能多地覆盖相关标志。该镜头的焦距为 6.5 毫米,视野约为 41 度。高速公路上的典型速度标志大约为 90 cm 宽,如果要在大约 30 m 的距离处检测到它们,则对应于大约 50 像素的大小。总共记录了超过 20 000 帧,其中每五帧被手动标记。每个标志的标签包含标志类型(人行横道、指定车道右侧、禁止站立或停车、优先道路、让路、50 公里/小时或 30 公里/小时)、能见度状态(遮挡、模糊或可见)和道路状态(是否标志是在正在行驶的道路上或在小路上)。
防护装备-头盔和背心检测
数据集下载地址:http://m6z.cn/61zarT
包含 774 个众包图像和 698 个网络挖掘图像。众包和网络挖掘的图像分别包含 2,496 和 2,230 个工人实例。
加州理工学院相机陷阱数据集
该数据集包含来自美国西南部 140 个摄像头位置的 243,100 张图像,带有 21 个动物类别的标签(加上空白),主要是在物种级别(例如,最常见的标签是负鼠、浣熊和土狼),以及 大约 66,000 个边界框注释。大约 70% 的图像被标记为空。
水下垃圾检测数据集
数据集下载地址:http://m6z.cn/6nnDQK
该数据来自 J-EDI 海洋垃圾数据集。构成该数据集的视频在质量、深度、场景中的对象和使用的相机方面差异很大。它们包含许多不同类型的海洋垃圾的图像,这些图像是从现实世界环境中捕获的,提供了处于不同衰减、遮挡和过度生长状态的各种物体。此外,水的清晰度和光的质量因视频而异。这些视频经过处理以提取 5,700 张图像,这些图像构成了该数据集,所有图像都在垃圾实例、植物和动物等生物对象以及 ROV 上标有边界框。
公众号后台回复“数据集”获取60+深度学习数据集下载~
# CV技术社群邀请函 #
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~