NLP(五十三)在Keras中使用英文Roberta模型实现文本分类

共 7141字,需浏览 15分钟

 ·

2022-06-09 14:26

  

    英文Roberta模型是2019年Facebook在论文RoBERTa: A Robustly Optimized BERT Pretraining Approach中新提出的预训练模型,其目的是改进BERT模型存在的一些问题,当时也刷新了一众NLP任务的榜单,达到SOTA效果,其模型和代码已开源,放在Github中的fairseq项目中。众所周知,英文Roberta模型使用Torch框架训练的,因此,其torch版本模型最为常见。
  当然,torch模型也是可以转化为tensorflow模型的。本文将会介绍如何将原始torch版本的英文Roberta模型转化为tensorflow版本模型,并且Keras中使用tensorflow版本模型实现英语文本分类。
  项目结构如下图所示:

510009211c248ab7e3c2e6099484d4b2.webp项目结构图

模型转化

  本项目首先会将原始torch版本的英文Roberta模型转化为tensorflow版本模型,该部分代码主要参考Github项目keras_roberta。
  首先需下载Facebook发布在fairseq项目中的roberta base模型,其访问网址为: https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.md。

cf8a216552e34ac3b97a3a02973b6e73.webpRoberta模型
运行convert_roberta_to_tf.py脚本,将torch模型转化为tensorflow模型。具体代码不在此给出,可以参考文章后续给出的Github项目地址。
  在模型的tokenizer方面,将RobertaTokenizer改为GPT2Tokenizer,因为RobertaTokenizer是继承自GPT2Tokenizer的,两者相似性很高。测试原始torch模型和tensorflow模型的表现,代码如下(tf_roberta_demo.py):
import os
import tensorflow as tf
from keras_roberta.roberta import build_bert_model
from keras_roberta.tokenizer import RobertaTokenizer
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
import numpy as np
import argparse


if __name__ == '__main__':
    roberta_path = 'roberta-base'
    tf_roberta_path = 'tf_roberta_base'
    tf_ckpt_name = 'tf_roberta_base.ckpt'
    vocab_path = 'keras_roberta'

    config_path = os.path.join(tf_roberta_path, 'bert_config.json')
    checkpoint_path = os.path.join(tf_roberta_path, tf_ckpt_name)
    if os.path.splitext(checkpoint_path)[-1] != '.ckpt':
        checkpoint_path += '.ckpt'

    gpt_bpe_vocab = os.path.join(vocab_path, 'encoder.json')
    gpt_bpe_merge = os.path.join(vocab_path, 'vocab.bpe')
    roberta_dict = os.path.join(roberta_path, 'dict.txt')

    tokenizer = RobertaTokenizer(gpt_bpe_vocab, gpt_bpe_merge, roberta_dict)
    model = build_bert_model(config_path, checkpoint_path, roberta=True)  # 建立模型,加载权重

    # 编码测试
    text1 = "hello, world!"
    text2 = "This is Roberta!"
    sep = [tokenizer.sep_token]
    cls = [tokenizer.cls_token]
    # 1. 先用'bpe_tokenize'将文本转换成bpe tokens
    tokens1 = cls + tokenizer.bpe_tokenize(text1) + sep
    tokens2 = sep + tokenizer.bpe_tokenize(text2) + sep
    # 2. 最后转换成id
    token_ids1 = tokenizer.convert_tokens_to_ids(tokens1)
    token_ids2 = tokenizer.convert_tokens_to_ids(tokens2)
    token_ids = token_ids1 + token_ids2
    segment_ids = [0] * len(token_ids1) + [1] * len(token_ids2)
    print(token_ids)
    print(segment_ids)

    print('\n ===== tf model predicting =====\n')
    our_output = model.predict([np.array([token_ids]), np.array([segment_ids])])
    print(our_output)

    print('\n ===== torch model predicting =====\n')
    roberta = FairseqRobertaModel.from_pretrained(roberta_path)
    roberta.eval()  # disable dropout

    input_ids = roberta.encode(text1, text2).unsqueeze(0)  # batch of size 1
    print(input_ids)
    their_output = roberta.model(input_ids, features_only=True)[0]
    print(their_output)

输出结果如下:

[0428916232328227131617381023282]
[0000001111111]

 ===== tf model predicting =====
[[[-0.01123665  0.05132651 -0.02170264 ... -0.03562857 -0.02836962
   -0.00519008]
  [ 0.04382067  0.07045364 -0.00431021 ... -0.04662359 -0.10770167
    0.1121687 ]
  [ 0.06198474  0.05240346  0.11088232 ... -0.08883709 -0.02932207
   -0.12898633]
  ...
  [-0.00229368  0.045834    0.00811818 ... -0.11751424 -0.06718166
    0.04085271]
  [-0.08509324 -0.27506304 -0.02425355 ... -0.24215901 -0.15481825
    0.17167582]
  [-0.05180666  0.06384835 -0.05997407 ... -0.09398533 -0.05159672
   -0.03988626]]
]

 ===== torch model predicting =====
tensor([[    0, 42891,     6,   232,   328,     2,     2,   713,    16,  1738,
           102,   328,     2]]
)
tensor([[[-0.0525,  0.0818, -0.0170,  ..., -0.0546, -0.0569, -0.0099],
         [-0.0765, -0.0568, -0.1400,  ..., -0.2612, -0.0455,  0.2975],
         [-0.0142,  0.1184,  0.0530,  ..., -0.0844,  0.0199,  0.1340],
         ...,
         [-0.0019,  0.1263, -0.0787,  ..., -0.3986, -0.0626,  0.1870],
         [ 0.0127, -0.2116,  0.0696,  ..., -0.1622, -0.1265,  0.0986],
         [-0.0473,  0.0748, -0.0419,  ..., -0.0892, -0.0595, -0.0281]]
],
       grad_fn=)

可以看到,两者在tokenize时的token_ids是一致的。

英语文本分类

  接着我们需要看下转化为的tensorflow版本的Roberta模型在英语文本分类数据集上的效果了。
  这里我们使用的是GLUE数据集中的SST-2SST-2(The Stanford Sentiment Treebank,斯坦福情感树库),单句子分类任务,包含电影评论中的句子和它们情感的人类注释。这项任务是给定句子的情感,类别分为两类正面情感(positive,样本标签对应为1)和负面情感(negative,样本标签对应为0),并且只用句子级别的标签。也就是,本任务也是一个二分类任务,针对句子级别,分为正面和负面情感。关于该数据集的具体介绍可参考网址:https://nlp.stanford.edu/sentiment/index.html。
  SST-2数据集中训练集样本数量为67349,验证集样本数量为872,测试集样本数量为1820,数据存储格式为tsv,读取数据的代码如下:(utils/load_data.py)

def read_model_data(file_path):
    data = []
    with open(file_path, 'r', encoding='utf-8'as f:
        lines = [_.strip() for _ in f.readlines()]
    for i, line in enumerate(lines):
        if i:
            items = line.split('\t')
            label = [01if int(items[1]) else [10]
            data.append([label, items[0]])
    return data

  在tokenizer部分,我们采用GTP2Tokenizer,该部分代码如下(utils/roberta_tokenizer.py):

# roberta tokenizer function for text pair
def tokenizer_encode(tokenizer, text, max_seq_length):
    sep = [tokenizer.sep_token]
    cls = [tokenizer.cls_token]
    # 1. 先用'bpe_tokenize'将文本转换成bpe tokens
    tokens1 = cls + tokenizer.bpe_tokenize(text) + sep
    # 2. 最后转换成id
    token_ids = tokenizer.convert_tokens_to_ids(tokens1)
    segment_ids = [0] * len(token_ids)
    pad_length = max_seq_length - len(token_ids)
    if pad_length >= 0:
        token_ids += [0] * pad_length
        segment_ids += [0] * pad_length
    else:
        token_ids = token_ids[:max_seq_length]
        segment_ids = segment_ids[:max_seq_length]

    return token_ids, segment_ids

  创建模型如下(model_train.py):

# 构建模型
def create_cls_model():
    # Roberta model
    roberta_model = build_bert_model(CONFIG_FILE_PATH, CHECKPOINT_FILE_PATH, roberta=True)  # 建立模型,加载权重

    for layer in roberta_model.layers:
        layer.trainable = True

    cls_layer = Lambda(lambda x: x[:, 0])(roberta_model.output)    # 取出[CLS]对应的向量用来做分类
    p = Dense(2, activation='softmax')(cls_layer)     # 多分类

    model = Model(roberta_model.input, p)
    model.compile(
        loss='categorical_crossentropy',
        optimizer=Adam(1e-5),   # 用足够小的学习率
        metrics=['accuracy']
    )

    return model

模型参数如下:

# 模型参数配置
EPOCH = 10              # 训练轮次
BATCH_SIZE = 64         # 批次数量
MAX_SEQ_LENGTH = 80     # 最大长度

模型训练完后,在验证数据集上的准确率(accuracy)为0.9415,F1值为0.9415,取得了不错效果。

模型预测

  我们对新样本进行模型预测(model_predict.py),预测结果如下:

Awesome movie for everyone to watch. Animation was flawless.
label: 1, prob: 0.9999607

I almost balled my eyes out 5 times. Almost. Beautiful movie, very inspiring.
label: 1, prob: 0.9999519

Not even worth it. It's a movie that's too stupid for adults, and too crappy for everyone. Skip if you're not 13, or even if you are.
label: 0, prob: 0.9999864

总结

  本文介绍了如何将原始torch版本的英文Roberta模型转化为tensorflow版本模型,并且Keras中使用tensorflow版本模型实现英语文本分类。
  本项目代码已放至Github,网址为:https://github.com/percent4/keras_roberta_text_classificaiton。
  感谢阅读,如有任何问题,欢迎大家交流~

参考网址

  1. fairseq: https://github.com/pytorch/fairseq

  2. GLUE tasks: https://gluebenchmark.com/tasks

  3. SST-2: https://nlp.stanford.edu/sentiment/index.html

  4. keras_roberta: https://github.com/midori1/keras_roberta

  5. Roberta paper: https://arxiv.org/pdf/1907.11692.pdf


浏览 118
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报