CVPR2022论文速递(2022.4.13)!共17篇!GAN/transformer/多模态等

AI算法与图像处理

共 3601字,需浏览 8分钟

 ·

2022-04-19 02:42


整理:AI算法与图像处理
CVPR2022论文和代码整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo
欢迎关注:


大家好,  最近正在优化每周分享的CVPR论文, 目前考虑按照不同类别去分类,方便不同方向的小伙伴挑选自己感兴趣的论文哈
欢迎大家留言其他想法,  合适的话会采纳哈! 求个三连支持一波哈



Updated on : 13 Apr 2022

total number : 17

分类 / Classification - 1 篇

Regression or Classification? Reflection on BP prediction from PPG data using Deep Neural Networks in the scope of practical applications

标题:回归或分类?基于实际应用范围的深神经网络对PPG数据对BP预测的反射

  • 论文/Paper: http://arxiv.org/pdf/2204.05605

  • 代码/Code: None

目标检测 / Object Detection - 2 篇

Towards Open-Set Object Detection and Discovery

标题:走向开放式对象检测和发现

  • 论文/Paper: http://arxiv.org/pdf/2204.05604

  • 代码/Code: None

DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative 3D Object Detection

标题:Dair-V2X:用于车辆 - 基础设施协同合作3D对象检测的大规模数据集

  • 论文/Paper: http://arxiv.org/pdf/2204.05575

  • 代码/Code: https://github.com/AIR-THU/DAIR-V2X.

语义分割/Segmentation - 3 篇

NightLab: A Dual-level Architecture with Hardness Detection for Segmentation at Night

标题:NightLab:一种双层架构,具有夜间分割的硬度检测

  • 论文/Paper: http://arxiv.org/pdf/2204.05538

  • 代码/Code: None

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation

标题:TOPFORMER:移动语义细分的令牌金字塔变压器

  • 论文/Paper: http://arxiv.org/pdf/2204.05525

  • 代码/Code: https://github.com/hustvl/TopFormer

Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation

标题:Panoptic,实例和语义关系:关系上下文编码器,以增强Panoptic分段

  • 论文/Paper: http://arxiv.org/pdf/2204.05370

  • 代码/Code: None

GAN - 1 篇

medXGAN: Visual Explanations for Medical Classifiers through a Generative Latent Space

标题:Medxgan:通过生成潜空间的医疗分类器的视觉解释

  • 论文/Paper: http://arxiv.org/pdf/2204.05376

  • 代码/Code: ions.

Transformers - - 2 篇

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation

标题:TOPFORMER:移动语义细分的令牌金字塔Transformer

  • 论文/Paper: http://arxiv.org/pdf/2204.05525

  • 代码/Code: https://github.com/hustvl/TopFormer

Are Multimodal Transformers Robust to Missing Modality?

标题:多模式Transformer是否强大地缺少模态?

  • 论文/Paper: http://arxiv.org/pdf/2204.05454

  • 代码/Code: None

多模态 / Multimodal - 2 篇

Probabilistic Compositional Embeddings for Multimodal Image Retrieval

标题:多式化图像检索的概率组成嵌入

  • 论文/Paper: http://arxiv.org/pdf/2204.05845

  • 代码/Code: https://github.com/andreineculai/MPC.

Are Multimodal Transformers Robust to Missing Modality?

标题:多模式变压器是否强大地缺少模态?

  • 论文/Paper: http://arxiv.org/pdf/2204.05454

  • 代码/Code: None

点云/Point Clouds - 1 篇

3DeformRS: Certifying Spatial Deformations on Point Clouds

标题:3DEFORMRS:在点云上认证空间变形

  • 论文/Paper: http://arxiv.org/pdf/2204.05687

  • 代码/Code: None

检索/Image Retrieval - 1 篇

Probabilistic Compositional Embeddings for Multimodal Image Retrieval

标题:多式化图像检索的概率组成嵌入

  • 论文/Paper: http://arxiv.org/pdf/2204.05845

  • 代码/Code: https://github.com/andreineculai/MPC.

其他/Other - 7 篇

Arch-Graph: Acyclic Architecture Relation Predictor for Task-Transferable Neural Architecture Search

标题:arch-traph:任务可转让神经架构的非循环架构关系预测器

  • 论文/Paper: http://arxiv.org/pdf/2204.05941

  • 代码/Code: None

Continual Predictive Learning from Videos

标题:来自视频的持续预测学习

  • 论文/Paper: http://arxiv.org/pdf/2204.05624

  • 代码/Code: https://github.com/jc043/CPL

HyperDet3D: Learning a Scene-conditioned 3D Object Detector

标题:HyperDET3D:学习场景调节的3D对象探测器

  • 论文/Paper: http://arxiv.org/pdf/2204.05599

  • 代码/Code: None

Open-set Text Recognition via Character-Context Decoupling

标题:通过字符上下文解耦的开放式文本识别

  • 论文/Paper: http://arxiv.org/pdf/2204.05535

  • 代码/Code: None

Few-shot Learning with Noisy Labels

标题:嘈杂的标签很少拍摄

  • 论文/Paper: http://arxiv.org/pdf/2204.05494

  • 代码/Code: None

Out-Of-Distribution Detection In Unsupervised Continual Learning

标题:无监督持续学习的分销检测

  • 论文/Paper: http://arxiv.org/pdf/2204.05462

  • 代码/Code: None

Generalizing Adversarial Explanations with Grad-CAM

标题:用Grad-Cam推广对抗性解释

  • 论文/Paper: http://arxiv.org/pdf/2204.05427

  • 代码/Code: None



浏览 54
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报