5分钟NLP:Python文本生成的Beam Search解码
来源:Deephub Imba 本文约800字,建议阅读5分钟 本文介绍了Python文本生成的Beam Search的解码。
Pancakes looks so = log(0.2) + log(0.7)= -1.9
Pancakes looks fluffy = log(0.2) + log(0.3)= -2.8
import torch.nn.functional as F
def log_probability_single(logits, labels):
logp = F.log_softmax(logits, dim=-1)
logp_label = torch.gather(logp, 2, labels.unsqueeze(2)).squeeze(-1)
return logp_label
def sentence_logprob(model, labels, input_len=0):
with torch.no_grad():
result = model(labels)
log_probability = log_probability_single(result.logits[:, :-1, :],
, 1:]) :
sentence_log_prob = torch.sum(log_probability[:, input_len:])
return sentence_log_prob.cpu().numpy()
input_sentence = "A love story, a mystery, a fantasy, a novel of self-discovery, a dystopia to rival George Orwell’s — 1Q84 is Haruki Murakami’s most ambitious undertaking yet: an instant best seller in his native Japan, and a tremendous feat of imagination from one of our most revered contemporary writers."
max_sequence = 100
input_ids = tokenizer(input_sentence,
return_tensors='pt')['input_ids'].to(device)
output = model.generate(input_ids, max_length=max_sequence, do_sample=False)
greedy_search_output = sentence_logprob(model,
output,
input_len=len(input_ids[0]))
print(tokenizer.decode(output[0]))
beam_search_output = model.generate(input_ids,
max_length=max_sequence,
num_beams=5,
do_sample=False,
no_repeat_ngram_size=2)
beam_search_log_prob = sentence_logprob(model,
beam_search_output,
input_len=len(input_ids[0]))
print(tokenizer.decode(beam_search_output[0]))
{beam_search_log_prob:.2f}") :
编辑:王菁
校对:林亦霖
评论