动态规划算法帮我通关了魔塔!

码农有道公众号

共 3585字,需浏览 8分钟

 ·

2021-01-14 18:37

来自公众号:labuladong


读完本文,可以去力扣解决如下题目:

174.地下城游戏(Hard

「魔塔」是一款经典的地牢类游戏,碰怪物要掉血,吃血瓶能加血,你要收集钥匙,一层一层上楼,最后救出美丽的公主。

现在手机上仍然可以玩这个游戏:

嗯,相信这款游戏承包了不少人的童年回忆,记得小时候,一个人拿着游戏机玩,两三个人围在左右指手画脚,这导致玩游戏的人体验极差,而左右的人异常快乐 😂

力扣第 174 题是一道类似的题目,我简单描述一下:

输入一个存储着整数的二维数组grid,如果grid[i][j] > 0,说明这个格子装着血瓶,经过它可以增加对应的生命值;如果grid[i][j] == 0,则这是一个空格子,经过它不会发生任何事情;如果grid[i][j] < 0,说明这个格子有怪物,经过它会损失对应的生命值。

现在你是一名骑士,将会出现在最上角,公主被困在最右下角,你只能向右和向下移动,请问骑士的初始生命值至少为多少,才能成功救出公主?

换句话说,就是问你至少需要多少初始生命值,能够让骑士从最左上角移动到最右下角,且任何时候生命值都要大于 0

函数签名如下:

int calculateMinimumHP(int[][] grid);

比如题目给我们举的例子,输入如下一个二维数组grid,用K表示骑士,用P表示公主:

算法应该返回 7,也就是说骑士的初始生命值至少为 7 时才能成功救出公主,行进路线如图中的箭头所示。

上篇文章 最小路径和 写过类似的问题,问你从左上角到右下角的最小路径和是多少。

我们做算法题一定要尝试举一反三,感觉今天这道题和最小路径和有点关系对吧?

想要最小化骑士的初始生命值,是不是意味着要最大化骑士行进路线上的血瓶?是不是相当于求「最大路径和」?是不是可以直接套用计算「最小路径和」的思路?

但是稍加思考,发现这个推论并不成立,吃到最多的血瓶,并不一定就能获得最小的初始生命值。

比如如下这种情况,如果想要吃到最多的血瓶获得「最大路径和」,应该按照下图箭头所示的路径,初始生命值需要 11:

但也很容易看到,正确的答案应该是下图箭头所示的路径,初始生命值只需要 1:

所以,关键不在于吃最多的血瓶,而是在于如何损失最少的生命值

这类求最值的问题,肯定要借助动态规划技巧,要合理设计dp数组/函数的定义。类比前文 最小路径和问题dp函数签名肯定长这样:

int dp(int[][] grid, int i, int j);

但是这道题对dp函数的定义比较有意思,按照常理,这个dp函数的定义应该是:

从左上角(grid[0][0])走到grid[i][j]至少需要dp(grid, i, j)的生命值

这样定义的话,base case 就是i, j都等于 0 的时候,我们可以这样写代码:

int calculateMinimumHP(int[][] grid) {
    int m = grid.length;
    int n = grid[0].length;
    // 我们想计算左上角到右下角所需的最小生命值
    return dp(grid, m - 1, n - 1);
}

int dp(int[][] grid, int i, int j) {
    // base case
    if (i == 0 && j == 0) {
        // 保证骑士落地不死就行了
        return gird[i][j] > 0 ? 1 : -grid[i][j] + 1;
    }
    ...
}

PS:为了简洁,之后dp(grid, i, j)就简写为dp(i, j),大家理解就好

接下来我们需要找状态转移了,还记得如何找状态转移方程吗?我们这样定义dp函数能否正确进行状态转移呢?

我们希望dp(i, j)能够通过dp(i-1, j)dp(i, j-1)推导出来,这样就能不断逼近 base case,也就能够正确进行状态转移。

具体来说,「到达A的最小生命值」应该能够由「到达B的最小生命值」和「到达C的最小生命值」推导出来:

但问题是,能推出来么?实际上是不能的

因为按照dp函数的定义,你只知道「能够从左上角到达B的最小生命值」,但并不知道「到达B时的生命值」。

「到达B时的生命值」是进行状态转移的必要参考,我给你举个例子你就明白了,假设下图这种情况:

你说这种情况下,骑士救公主的最优路线是什么?

显然是按照图中蓝色的线走到B,最后走到A对吧,这样初始血量只需要 1 就可以;如果走黄色箭头这条路,先走到C然后走到A,初始血量至少需要 6。

为什么会这样呢?骑士走到BC的最少初始血量都是 1,为什么最后是从B走到A,而不是从C走到A呢?

因为骑士走到B的时候生命值为 11,而走到C的时候生命值依然是 1。

如果骑士执意要通过C走到A,那么初始血量必须加到 6 点才行;而如果通过B走到A,初始血量为 1 就够了,因为路上吃到血瓶了,生命值足够抗A上面怪物的伤害。

这下应该说的很清楚了,再回顾我们对dp函数的定义,上图的情况,算法只知道dp(1, 2) = dp(2, 1) = 1,都是一样的,怎么做出正确的决策,计算出dp(2, 2)呢?

所以说,我们之前对dp数组的定义是错误的,信息量不足,算法无法做出正确的状态转移

正确的做法需要反向思考,依然是如下的dp函数:

int dp(int[][] grid, int i, int j);

但是我们要修改dp函数的定义:

grid[i][j]到达终点(右下角)所需的最少生命值是dp(grid, i, j)

那么可以这样写代码:

int calculateMinimumHP(int[][] grid) {
    // 我们想计算左上角到右下角所需的最小生命值
    return dp(grid, 00);
}

int dp(int[][] grid, int i, int j) {
    int m = grid.length;
    int n = grid[0].length;
    // base case
    if (i == m - 1 && j == n - 1) {
        return grid[i][j] >= 0 ? 1 : -grid[i][j] + 1;
    }
    ...
}

根据新的dp函数定义和 base case,我们想求dp(0, 0),那就应该试图通过dp(i, j+1)dp(i+1, j)推导出dp(i, j),这样才能不断逼近 base case,正确进行状态转移。

具体来说,「从A到达右下角的最少生命值」应该由「从B到达右下角的最少生命值」和「从C到达右下角的最少生命值」推导出来:

能不能推导出来呢?这次是可以的,假设dp(0, 1) = 5, dp(1, 0) = 4,那么可以肯定要从A走向C,因为 4 小于 5 嘛。

那么怎么推出dp(0, 0)是多少呢?

假设A的值为 1,既然知道下一步要往C走,且dp(1, 0) = 4意味着走到grid[1][0]的时候至少要有 4 点生命值,那么就可以确定骑士出现在A点时需要 4 - 1 = 3 点初始生命值,对吧。

那如果A的值为 10,落地就能捡到一个大血瓶,超出了后续需求,4 - 10 = -6 意味着骑士的初始生命值为负数,这显然不可以,骑士的生命值小于 1 就挂了,所以这种情况下骑士的初始生命值应该是 1。

综上,状态转移方程已经推出来了:

int res = min(
    dp(i + 1, j),
    dp(i, j + 1)
) - grid[i][j];

dp(i, j) = res <= 0 ? 1 : res;

根据这个核心逻辑,加一个备忘录消除重叠子问题,就可以直接写出最终的代码了:

/* 主函数 */
int calculateMinimumHP(int[][] grid) {
    int m = grid.length;
    int n = grid[0].length;
    // 备忘录中都初始化为 -1
    memo = new int[m][n];
    for (int[] row : memo) {
        Arrays.fill(row, -1);
    }

    return dp(grid, 00);
}

// 备忘录,消除重叠子问题
int[][] memo;

/* 定义:从 (i, j) 到达右下角,需要的初始血量至少是多少 */
int dp(int[][] grid, int i, int j) {
    int m = grid.length;
    int n = grid[0].length;
    // base case
    if (i == m - 1 && j == n - 1) {
        return grid[i][j] >= 0 ? 1 : -grid[i][j] + 1;
    }
    if (i == m || j == n) {
        return Integer.MAX_VALUE;
    }
    // 避免重复计算
    if (memo[i][j] != -1) {
        return memo[i][j];
    }
    // 状态转移逻辑
    int res = Math.min(
            dp(grid, i, j + 1),
            dp(grid, i + 1, j)
        ) - grid[i][j];
    // 骑士的生命值至少为 1
    memo[i][j] = res <= 0 ? 1 : res;

    return memo[i][j];
}

这就是自顶向下带备忘录的动态规划解法,参考前文 动态规划套路详解 很容易就可以改写成dp数组的迭代解法,这里就不写了,读者可以尝试自己写一写。

这道题的核心是定义dp函数,找到正确的状态转移方程,从而计算出正确的答案。

推荐阅读:

完全整理 | 365篇高质技术文章目录整理

算法之美 : 栈和队列

主宰这个世界的10大算法

彻底理解cookie、session、token

浅谈什么是递归算法

专注服务器后台技术栈知识总结分享

欢迎关注交流共同进步

浏览 23
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报