目标检测框架:支持TF2的TF Object Detection

机器学习算法工程师

共 1152字,需浏览 3分钟

 ·

2021-01-05 15:56

一直以来,大家最常用的目标检测库是港中文的mmdetectionFacebook的detectron2库,不过这两个库都是基于PyTorch的,PyTorch的模型部署方面还是稍差于TensorFlow,如果想用TensorFlow的目标检测模型,最好的还是选择还是谷歌官方的TF Object Detection库:



目前随着TensorFlow 2x的到来,TF Object Detection库也支持TF2了,而且最重要的是还兼容TensorFlow 1.x,这真是非常nice。不过官方还是建议大家使用最新的TF2来训练模型,主要原因如下:

  • 最新的模型只会在TF2中更新,未来还会继续更新;

  • TF2训练得到的模型效果和TF1几乎没有差别;

  • TF2可以更容易地使用GPU和TPU进行分布式训练;

  • TF2的Eager模式使debug更容易;


除了支持TF2外,TF2也新增了更多的模型如CenterNet和EfficientDet,具体Model Zoo如下所示:


不过,如果你想使用TF1,那么你可以查看对应的Model Zoo(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md),要比TF2支持的模型少一些。


另外,贴心的开发者还给了详细的入门教程Colab:

  • 训练:在自己的数据集上fine-tune一个检测器;

  • 推理:用model zoo中的模型进行推理预测;

  • 移动端部署:Fine-tune一个检测器,并用TensorFlow Lite部署

更多见https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md




推荐阅读

无需tricks,知识蒸馏提升ResNet50在ImageNet上准确度至80%+

不妨试试MoCo,来替换ImageNet上pretrain模型!

重磅!一文深入深度学习模型压缩和加速

从源码学习Transformer!

mmdetection最小复刻版(七):anchor-base和anchor-free差异分析

mmdetection最小复刻版(四):独家yolo转化内幕


机器学习算法工程师


                                    一个用心的公众号


 

浏览 35
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报