目标检测框架:支持TF2的TF Object Detection

共 1432字,需浏览 3分钟

 ·

2022-06-24 10:56

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

一直以来,大家最常用的目标检测库是港中文的mmdetectionFacebook的detectron2库,不过这两个库都是基于PyTorch的,PyTorch的模型部署方面还是稍差于TensorFlow,如果想用TensorFlow的目标检测模型,最好的还是选择还是谷歌官方的TF Object Detection库:

目前随着TensorFlow 2x的到来,TF Object Detection库也支持TF2了,而且最重要的是还兼容TensorFlow 1.x,这真是非常nice。不过官方还是建议大家使用最新的TF2来训练模型,主要原因如下:

  • 最新的模型只会在TF2中更新,未来还会继续更新;

  • TF2训练得到的模型效果和TF1几乎没有差别;

  • TF2可以更容易地使用GPU和TPU进行分布式训练;

  • TF2的Eager模式使debug更容易;


除了支持TF2外,TF2也新增了更多的模型如CenterNet和EfficientDet,具体Model Zoo如下所示:


不过,如果你想使用TF1,那么你可以查看对应的Model Zoo(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md),要比TF2支持的模型少一些。


另外,贴心的开发者还给了详细的入门教程Colab:

  • 训练:在自己的数据集上fine-tune一个检测器;

  • 推理:用model zoo中的模型进行推理预测;

  • 移动端部署:Fine-tune一个检测器,并用TensorFlow Lite部署

更多见https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md

好消息!

小白学视觉知识星球

开始面向外开放啦👇👇👇




下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 22
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报