OpenCV深度神经网络实现人体姿态评估
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
OpenCV自从发布了DNN模块之后,就开始以开挂的方式支持各种深度学习预训练模型的调用,DNN模块的全称为深度神经网络,但是并不是所有深度学习模型导出到OpenCV DNN模块中都可以使用,只有那些OpenCV声明支持的层与网络模型才会被DNN模块接受,当期OpenCV支持的模型与层类型可以在下面链接中找到相关文档
https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
OpenCV3.4.x的版本开始支持在OpenCV DNN模块中使用openopse的深度学习模型,实现人体单人姿态评估, 首先需要下载人体姿态评估的预训练模型。基于COCO数据集训练的模型下载地址如下:
http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel
基于MPI数据集训练的模型下载地址如下:
http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/mpi/pose_iter_160000.caffemodel
下面只需要如下几步就可以实现基于OpenCV的单人姿态评估:
1.定义COCO数据集支持的18点人体位置与关系位置
BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
"LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
"RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,
"LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }
POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],
["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],
["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]
2.定义MPI数据集支持的15点人体位置与关系位置
BODY_PARTS = { "Head": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
"LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
"RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "Chest": 14,
"Background": 15 }
POSE_PAIRS = [ ["Head", "Neck"], ["Neck", "RShoulder"], ["RShoulder", "RElbow"],
["RElbow", "RWrist"], ["Neck", "LShoulder"], ["LShoulder", "LElbow"],
["LElbow", "LWrist"], ["Neck", "Chest"], ["Chest", "RHip"], ["RHip", "RKnee"],
["RKnee", "RAnkle"], ["Chest", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"] ]
3.根据不同数据集调用DNN模块加载指定的预训练模型
inWidth = 368
inHeight = 368
thr = 0.1
protoc = "D:/projects/pose_body/mpi/pose_deploy_linevec_faster_4_stages.prototxt"
model = "D:/projects/pose_body/mpi/pose_iter_160000.caffemodel"
net = cv.dnn.readNetFromCaffe(protoc, model)
4.调用OpenCV打开摄像头
cap = cv.VideoCapture(0)
height = cap.get(cv.CAP_PROP_FRAME_HEIGHT)
width = cap.get(cv.CAP_PROP_FRAME_WIDTH)
5.使用前馈网络模型预测
frameWidth = frame.shape[1]
frameHeight = frame.shape[0]
inp = cv.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight),
(0, 0, 0), swapRB=False, crop=False)
net.setInput(inp)
out = net.forward()
6.绘制检测到人体姿态关键点位置
points = []
for i in range(len(BODY_PARTS)):
# Slice heatmap of corresponging body's part.
heatMap = out[0, i, :, :]
# Originally, we try to find all the local maximums. To simplify a sample
# we just find a global one. However only a single pose at the same time
# could be detected this way.
_, conf, _, point = cv.minMaxLoc(heatMap)
x = (frameWidth * point[0]) / out.shape[3]
y = (frameHeight * point[1]) / out.shape[2]
# Add a point if it's confidence is higher than threshold.
points.append((x, y) if conf > thr else None)
for pair in POSE_PAIRS:
partFrom = pair[0]
partTo = pair[1]
assert(partFrom in BODY_PARTS)
assert(partTo in BODY_PARTS)
idFrom = BODY_PARTS[partFrom]
idTo = BODY_PARTS[partTo]
if points[idFrom] and points[idTo]:
x1, y1 = points[idFrom]
x2, y2 = points[idTo]
cv.line(frame, (np.int32(x1), np.int32(y1)), (np.int32(x2), np.int32(y2)), (0, 255, 0), 3)
cv.ellipse(frame, (np.int32(x1), np.int32(y1)), (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
cv.ellipse(frame, (np.int32(x2), np.int32(y2)), (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
完整的代码如下:
import cv2 as cv
import numpy as np
dataset = 'MPI'
if dataset == 'COCO':
BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
"LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
"RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,
"LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }
POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],
["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],
["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]
else:
assert(dataset == 'MPI')
BODY_PARTS = { "Head": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
"LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
"RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "Chest": 14,
"Background": 15 }
POSE_PAIRS = [ ["Head", "Neck"], ["Neck", "RShoulder"], ["RShoulder", "RElbow"],
["RElbow", "RWrist"], ["Neck", "LShoulder"], ["LShoulder", "LElbow"],
["LElbow", "LWrist"], ["Neck", "Chest"], ["Chest", "RHip"], ["RHip", "RKnee"],
["RKnee", "RAnkle"], ["Chest", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"] ]
inWidth = 368
inHeight = 368
thr = 0.1
protoc = "D:/projects/pose_body/mpi/pose_deploy_linevec_faster_4_stages.prototxt"
model = "D:/projects/pose_body/mpi/pose_iter_160000.caffemodel"
net = cv.dnn.readNetFromCaffe(protoc, model)
cap = cv.VideoCapture(0)
height = cap.get(cv.CAP_PROP_FRAME_HEIGHT)
width = cap.get(cv.CAP_PROP_FRAME_WIDTH)
video_writer = cv.VideoWriter("D:/pose_estimation_demo.mp4", cv.VideoWriter_fourcc('D', 'I', 'V', 'X'), 15, (640, 480), True)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
frameWidth = frame.shape[1]
frameHeight = frame.shape[0]
inp = cv.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight),
(0, 0, 0), swapRB=False, crop=False)
net.setInput(inp)
out = net.forward()
print(len(BODY_PARTS), out.shape[0])
# assert(len(BODY_PARTS) == out.shape[1])
points = []
for i in range(len(BODY_PARTS)):
# Slice heatmap of corresponging body's part.
heatMap = out[0, i, :, :]
# Originally, we try to find all the local maximums. To simplify a sample
# we just find a global one. However only a single pose at the same time
# could be detected this way.
_, conf, _, point = cv.minMaxLoc(heatMap)
x = (frameWidth * point[0]) / out.shape[3]
y = (frameHeight * point[1]) / out.shape[2]
# Add a point if it's confidence is higher than threshold.
points.append((x, y) if conf > thr else None)
for pair in POSE_PAIRS:
partFrom = pair[0]
partTo = pair[1]
assert(partFrom in BODY_PARTS)
assert(partTo in BODY_PARTS)
idFrom = BODY_PARTS[partFrom]
idTo = BODY_PARTS[partTo]
if points[idFrom] and points[idTo]:
x1, y1 = points[idFrom]
x2, y2 = points[idTo]
cv.line(frame, (np.int32(x1), np.int32(y1)), (np.int32(x2), np.int32(y2)), (0, 255, 0), 3)
cv.ellipse(frame, (np.int32(x1), np.int32(y1)), (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
cv.ellipse(frame, (np.int32(x2), np.int32(y2)), (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
t, _ = net.getPerfProfile()
freq = cv.getTickFrequency() / 1000
cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
# video_writer.write(frame);
# cv.imwrite("D:/pose.png", frame)
cv.imshow('OpenPose using OpenCV', frame)
运行结果如下:
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~