一个非常有趣的SQL优化案例
问题描述
分析
表的信息
估算cost
start-up cost
run cost
执行计划
实际执行时间
从内核视角来分析
解决方案
禁用走主键扫描
增加(user_id, id)索引
写在最后
Coding过程中经常会写SQL语句,有时写的SQL出现慢查询而被DBA鄙视。我们一起从使用者,DBA,内核开发三个不同角度来分析和解决一个SQL性能问题。
问题描述
A:两条SQL语句只有limit不一样,而 limit 1
的执行比limit 10
的慢N倍我:是不是缓存问题,先执行 limit 10
再执行limit 1
试试A:......,执行了, limit
还是很慢
select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 10;
select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1;
表结构
# \d user_gift;
Table "yay.user_gift"
Column | Type | Collation | Nullable | Default
--------------+--------------------------+-----------+----------+------------------------------------------------
id | bigint | | not null | nextval('user_gift_id_seq'::regclass)
user_id | integer | | not null |
ug_name | character varying(100) | | not null |
expired_time | timestamp with time zone | | | now()
created_time | timestamp with time zone | | not null | now()
updated_time | timestamp with time zone | | not null | now()
user_type | user_type | | not null | 'default'::user_type
Indexes:
"user_gift_pkey" PRIMARY KEY, btree (id)
"idx_user_type" btree (user_id, ug_name)
"user_gift_ug_name_idx" btree (ug_name)
分析
执行计划
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.43..416.25 rows=1 width=73) (actual time=135.213..135.214 rows=1 loops=1)
Output: xxx
-> Index Scan Backward using user_gift_pkey on yay.user_gift (cost=0.43..368000.44 rows=885 width=73) (actual time=135.212..135.212 rows=1 loops=1)
Output: xxx
Filter: ((user_gift.user_id = 11695667) AND (user_gift.user_type = 'default'::user_type))
Rows Removed by Filter: 330192
Planning Time: 0.102 ms
Execution Time: 135.235 ms
(8 rows)
Time: 135.691 ms
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=868.20..868.22 rows=10 width=73) (actual time=1.543..1.545 rows=10 loops=1)
Output: xxx
-> Sort (cost=868.20..870.41 rows=885 width=73) (actual time=1.543..1.543 rows=10 loops=1)
Output: xxx
Sort Key: user_gift.id DESC
Sort Method: top-N heapsort Memory: 27kB
-> Index Scan using idx_user_type on yay.user_gift (cost=0.56..849.07 rows=885 width=73) (actual time=0.020..1.366 rows=775 loops=1)
Output: xxx
Index Cond: (user_gift.user_id = 11695667)
Filter: (user_gift.user_type = 'default'::user_type)
Planning Time: 0.079 ms
Execution Time: 1.564 ms
(12 rows)
Time: 1.871 ms
limit 1
语句 :使用主键进行倒序扫描,Index Scan Backward using user_gift_pkey on yay.user_gift
limit 10
语句 :使用(user_id, user_type)复合索引直接查找用户数据,Index Scan using idx_user_type on yay.user_gift
limit 1
的total costLimit (cost=0.43..416.25 rows=1 width=73)
是416,run cost是416-0.43=415.57。而limit 10
的total costLimit (cost=868.20..868.22 rows=10 width=73)
是868.22。Index Scan Backward using user_gift_pkey
的方式估算,那么limit 1
成本是415, limit 2
是415*2=830, limit 3
是 1245,大于868,所以当limit 3
的时候会使用Index Scan using idx_user_type
扫索引的计划。# explain select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 2;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.43..831.95 rows=2 width=73)
-> Index Scan Backward using user_gift_pkey on user_gift (cost=0.43..367528.67 rows=884 width=73)
Filter: ((user_id = 11695667) AND (user_type = 'default'::user_type))
(3 rows)
Time: 0.341 ms
# explain select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 3;
QUERY PLAN
----------------------------------------------------------------------------------------------------------
Limit (cost=866.19..866.20 rows=3 width=73)
-> Sort (cost=866.19..868.40 rows=884 width=73)
Sort Key: id DESC
-> Index Scan using idx_user_type on user_gift (cost=0.56..854.76 rows=884 width=73)
Index Cond: (user_id = 11695667)
Filter: (user_type = 'default'::user_type)
(6 rows)
Time: 0.352 ms
当 limit 2
时,执行计划是Index Scan Backward using user_gift_pkey
当 limit 3
时,就改变计划了,Index Scan using idx_user_type on user_gift
实际执行时间
limit 1
时成本估算的是416.25,比limit 10
的868.22
还是要快的。但是实际
limit 1
执行cost是135.691 ms,而limit 10
执行cost是1.871 ms,比limit 10
慢了70倍!!!# explain (analyze, buffers, verbose) select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.43..416.29 rows=1 width=73) (actual time=451.542..451.544 rows=1 loops=1)
Output: xxx
Buffers: shared hit=214402 read=5280 dirtied=2302
I/O Timings: read=205.027
-> Index Scan Backward using user_gift_pkey on yay.user_gift (cost=0.43..368032.94 rows=885 width=73) (actual time=451.540..451.540 rows=1 loops=1)
Output: xxx
Filter: ((user_gift.user_id = 11695667) AND (user_gift.user_type = 'default'::user_type))
Rows Removed by Filter: 333462
Buffers: shared hit=214402 read=5280 dirtied=2302
I/O Timings: read=205.027
Planning Time: 1.106 ms
Execution Time: 451.594 ms
(12 rows)
# explain (analyze, buffers, verbose) select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 3;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=860.51..860.52 rows=3 width=73) (actual time=14.633..14.634 rows=3 loops=1)
Output: xxx
Buffers: shared hit=467 read=321
I/O Timings: read=10.112
-> Sort (cost=860.51..862.72 rows=885 width=73) (actual time=14.632..14.632 rows=3 loops=1)
Output: xxx
Sort Key: user_gift.id DESC
Sort Method: top-N heapsort Memory: 25kB
Buffers: shared hit=467 read=321
I/O Timings: read=10.112
-> Index Scan using idx_user_type on yay.user_gift (cost=0.56..849.07 rows=885 width=73) (actual time=0.192..14.424 rows=775 loops=1)
Output: xxx
Index Cond: (user_gift.user_id = 11695667)
Filter: (user_gift.user_type = 'default'::user_type)
Buffers: shared hit=464 read=321
I/O Timings: read=10.112
Planning Time: 0.111 ms
Execution Time: 14.658 ms
(18 rows)
limit 1
时的IO成本I/O Timings: read=205.027
,Rows Removed by Filter: 333462
显示过滤了333462行记录limit 3
时IO成本I/O Timings: read=10.112
,
Buffers: shared hit=214402 read=5280 dirtied=2302
可以看出limit 1
的计划从磁盘读取了5280个blocks(pages)才找到符合where条件的记录。schemaname | yay
tablename | user_gift
attname | id
inherited | f
null_frac | 0
avg_width | 8
n_distinct | -1
most_common_vals |
most_common_freqs |
histogram_bounds | {93,9817,19893,28177,.......}
correlation | 0.788011
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |
schemaname | yay
tablename | user_gift
attname | user_id
inherited | f
null_frac | 0
avg_width | 4
n_distinct | -0.175761
most_common_vals | {11576819,10299480,14020501,.......,11695667,......}
most_common_freqs | {0.000353333,0.000326667,0.000246667,......,9.33333e-05,......}
histogram_bounds | {3,10002181,10005599,10009672,......,11693300,11698290,......}
correlation | 0.53375
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |
schemaname | yay
tablename | user_gift
attname | user_type
inherited | f
null_frac | 0
avg_width | 4
n_distinct | 3
most_common_vals | {default, invalid, deleted}
most_common_freqs | {0.997923,0.00194,0.000136667}
histogram_bounds |
correlation | 0.99763
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |
user_id
字段的most_common_vals
中有11695667(user_id)的值,则可以直接通过其对应的most_common_freqs
来得到其selectivity是9.33333e-05;user_type
字段为default
对应的selectivity是0.997923。所以 where user_id=11695667 and user_type='default'
的selectivity是0.0000933333*0.997923 = 0.0000931394467359。
(cost=0.43..367528.67 rows=884 width=73)
的884行一样。从user_gift_pkey(主键id)扫描的话:只要扫描9499740/884=10746行就能找到满足条件的记录,且无须进行排序( order by id desc
)从idx_user_type索引扫描的话:虽然能很快找到此用户的数据,但是需要给884行进行排序,扫描+排序的cost比从主键扫描要高。
表最大的page=128709
# select max(ctid) from user_gift;
max
-------------
(128709,29)
(1 row)
user id=11695667的最大page=124329
# select max(ctid), min(ctid) from user_gift where user_id=11695667;
max | min
-------------+-----------
(124329,22) | (3951,64)
(1 row)
表本身的pages和tuples数量
# SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift';
relpages | reltuples
----------+-------------
128875 | 9.49974e+06
(1 row)
limit 1
时扫描了5280个pages(包含了主键索引的pages),过滤了333462万行记录,和估算的基本一样:Rows Removed by Filter: 333462
Buffers: shared hit=214402 read=5280 dirtied=2302
I/O Timings: read=205.027
优化器假设数据分布均匀,只需要扫描10746个记录 而实际需要扫描322862个记录
[root]$ fio -name iops -rw=read -bs=8k -runtime=10 -iodepth=1 -filename /dev/sdb -ioengine libaio -direct=1
...
Run status group 0 (all jobs):
READ: bw=193MiB/s (202MB/s), 193MiB/s-193MiB/s (202MB/s-202MB/s), io=1928MiB (2022MB), run=10001-10001msec
fio
结果可以看出,此数据库机器磁盘的顺序读取速度约为 200MB/s,那么扫描40MB数据需要约200ms,与实际需要的时间205ms基本相等。postgreSQL的优化器认为数据分布是均匀的,只需要倒序扫描很快就找到符合条件的记录,而实际上此用户的数据分布在表的前端,就导致了实际执行start-up time如此慢了。
从内核视角来分析
优化器如何估算cost 优化器如何统计actual time
表的信息
主键索引
# SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift_pkey';
relpages | reltuples
----------+-------------
40035 | 9.49974e+06
(1 row)
user_id 索引
# SELECT relpages, reltuples FROM pg_class WHERE relname = 'idx_user_type';
relpages | reltuples
----------+-------------
113572 | 9.49974e+06
(1 row)
表本身的pages是128875
# SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift';
relpages | reltuples
----------+-------------
128875 | 9.49974e+06
(1 row)
user id=11695667的数据775行
=# select count(1) from user_gift where user_id=11695667;
count
-------
775
(1 row)
=# select count(1) from user_gift where user_id=11695667 and user_type = 'default' ;
count
-------
775
(1 row)
树高度
# 主键高度
# select * from bt_metap('user_gift_pkey');
magic | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples
--------+---------+------+-------+----------+-----------+-------------+-------------------------
340322 | 3 | 412 | 2 | 412 | 2 | 0 | 9.31928e+06
(1 row)
// idx_user_type 高度
# select * from bt_metap('idx_user_type');
magic | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples
--------+---------+-------+-------+----------+-----------+-------------+-------------------------
340322 | 3 | 15094 | 3 | 15094 | 3 | 0 | 9.49974e+06
(1 row)
估算cost
start-up cost
// selfuncs.c
void
btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
Cost *indexStartupCost, Cost *indexTotalCost,
Selectivity *indexSelectivity, double *indexCorrelation,
double *indexPages)
{
......
descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
costs.indexStartupCost += descentCost;
......
// This cost is somewhat arbitrarily set at 50x cpu_operator_cost per page touched
descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
costs.indexStartupCost += descentCost;
......
}
N(index,tuple) :索引tuples(记录)数量 Height(index) :索引B+tree的高度 cpu_operator_cost : 默认值0.0025
N(index,tuple) :9.49974e+06, Height(index) :2
和postgreSQL估算的start-up cost=0.43 一样。
N(index,tuple) :9.49974e+06, Height(index) :3
run cost
src/backend/optimizer/path/costsize.c
的cost_index
函数。index scan executor:扫描到一个tuple,就返回给selection executor selection executor:对tuple进行过滤,如果符合条件则返回给limit executor,如果不符合则继续调用index scan executor limit executor:当达到limit限制则将数据返回给projection executor projection executor:过滤掉非 select
列的数据
selection executor
和projection executor
合并到index scan executor
中执行,以减少数据在executor之间的传递。index scan executor:扫描到tuple,然后进行selection过滤,如果符合条件就进行projection再返回给limit,如果不符合条件,则继续扫描 limit executor:当达到limit限制则将数据返回
// src/backend/executor/execProcnode.c
static TupleTableSlot *
ExecProcNodeInstr(PlanState *node)
{
TupleTableSlot *result;
InstrStartNode(node->instrument);
result = node->ExecProcNodeReal(node);
// 统计执行指标
InstrStopNode(node->instrument, TupIsNull(result) ? 0.0 : 1.0);
return result;
}
where
语句的第一条结果为止。user_id=xxx
的过滤已经下沉到index scan executor
里面了。---> int4eq(FunctionCallInfo fcinfo) (/home/ken/cpp/postgres/src/backend/utils/adt/int.c:379)
ExecInterpExpr(ExprState * state, ExprContext * econtext, _Bool * isnull) (/home/ken/cpp/postgres/src/backend/executor/execExprInterp.c:704)
ExecInterpExprStillValid(ExprState * state, ExprContext * econtext, _Bool * isNull) (/home/ken/cpp/postgres/src/backend/executor/execExprInterp.c:1807)
ExecEvalExprSwitchContext(ExprState * state, ExprContext * econtext, _Bool * isNull) (/home/ken/cpp/postgres/src/include/executor/executor.h:322)
---> ExecQual(ExprState * state, ExprContext * econtext) (/home/ken/cpp/postgres/src/include/executor/executor.h:391)
ExecScan(ScanState * node, ExecScanAccessMtd accessMtd, ExecScanRecheckMtd recheckMtd) (/home/ken/cpp/postgres/src/backend/executor/execScan.c:227)
---> ExecIndexScan(PlanState * pstate) (/home/ken/cpp/postgres/src/backend/executor/nodeIndexscan.c:537)
ExecProcNodeInstr(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:466)
ExecProcNodeFirst(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:450)
ExecProcNode(PlanState * node) (/home/ken/cpp/postgres/src/include/executor/executor.h:248)
---> ExecLimit(PlanState * pstate) (/home/ken/cpp/postgres/src/backend/executor/nodeLimit.c:96)
ExecProcNodeInstr(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:466)
ExecProcNodeFirst(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:450)
ExecProcNode(PlanState * node) (/home/ken/cpp/postgres/src/include/executor/executor.h:248)
ExecutePlan(EState * estate, PlanState * planstate, _Bool use_parallel_mode, CmdType operation, _Bool sendTuples, uint64 numberTuples, ScanDirection direction, DestReceiver * dest, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:1632)
standard_ExecutorRun(QueryDesc * queryDesc, ScanDirection direction, uint64 count, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:350)
ExecutorRun(QueryDesc * queryDesc, ScanDirection direction, uint64 count, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:294)
ExplainOnePlan(PlannedStmt * plannedstmt, IntoClause * into, ExplainState * es, const char * queryString, ParamListInfo params, QueryEnvironment * queryEnv, const instr_time * planduration, const BufferUsage * bufusage) (/home/ken/cpp/postgres/src/backend/commands/explain.c:571)
ExplainOneQuery(Query * query, int cursorOptions, IntoClause * into, ExplainState * es, const char * queryString, ParamListInfo params, QueryEnvironment * queryEnv) (/home/ken/cpp/postgres/src/backend/commands/explain.c:404)
ExplainQuery(ParseState * pstate, ExplainStmt * stmt, ParamListInfo params, DestReceiver * dest) (/home/ken/cpp/postgres/src/backend/commands/explain.c:275)
ExecQual(qual, econtext)
是对tuple进行过滤,因为selection已经合并到scan中了。TupleTableSlot *
ExecScan(ScanState *node, ExecScanAccessMtd accessMtd, ExecScanRecheckMtd recheckMtd)
{
......
for (;;)
{
TupleTableSlot *slot;
slot = ExecScanFetch(node, accessMtd, recheckMtd);
......
econtext->ecxt_scantuple = slot;
// Note : selection判断
if (qual == NULL || ExecQual(qual, econtext))
{
if (projInfo)
{
return ExecProject(projInfo);
}
else
{
return slot;
}
}
else
InstrCountFiltered1(node, 1);
}
}
解决方案
禁用走主键扫描
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id+0 desc limit 1;
order by id
改成order by id+0
,由于id+0
是个表达式所以优化器就就不会使用user_gift_pkey这个索引了。增加(user_id, id)索引
create index idx_user_id on user_gift(user_id, id);
写在最后
END
分享一下我写的《10万字Springboot经典学习笔记》中,点击下面小卡片,进入【Java秃头哥】,回复:笔记,即可免费获取。
点赞是最大的支持
评论