一个非常有趣的SQL优化案例

共 19630字,需浏览 40分钟

 ·

2021-11-12 18:55

  • 问题描述

  • 分析

    • 表的信息

    • 估算cost

    • start-up cost

    • run cost

    • 执行计划

    • 实际执行时间

    • 从内核视角来分析

  • 解决方案

    • 禁用走主键扫描

    • 增加(user_id, id)索引

  • 写在最后

Coding过程中经常会写SQL语句,有时写的SQL出现慢查询而被DBA鄙视。我们一起从使用者,DBA,内核开发三个不同角度来分析和解决一个SQL性能问题。

描述


同事A来问我这个假DBA一条SQL的性能问题:


  • A:两条SQL语句只有limit不一样,而limit 1的执行比limit 10的慢N倍
  • 我:是不是缓存问题,先执行limit 10再执行limit 1试试
  • A:......,执行了,limit还是很慢


两条SQL生产环境执行情况
limit 10
select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 10;
Execution Time: 1.307 ms
limit 1
select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1;
Execution Time: 144.098 ms


  • 表结构


# \d user_gift; Table "yay.user_gift" Column | Type | Collation | Nullable | Default--------------+--------------------------+-----------+----------+------------------------------------------------ id | bigint | | not null | nextval('user_gift_id_seq'::regclass) user_id | integer | | not null | ug_name | character varying(100) | | not null | expired_time | timestamp with time zone | | | now() created_time | timestamp with time zone | | not null | now() updated_time | timestamp with time zone | | not null | now() user_type | user_type | | not null | 'default'::user_typeIndexes: "user_gift_pkey" PRIMARY KEY, btree (id) "idx_user_type" btree (user_id, ug_name) "user_gift_ug_name_idx" btree (ug_name)


分析

执行计划


既然不是缓存问题,那我们先看看执行计划有什么不一样的
limit 1
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1; QUERY PLAN--------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=0.43..416.25 rows=1 width=73) (actual time=135.213..135.214 rows=1 loops=1) Output: xxx -> Index Scan Backward using user_gift_pkey on yay.user_gift (cost=0.43..368000.44 rows=885 width=73) (actual time=135.212..135.212 rows=1 loops=1) Output: xxx Filter: ((user_gift.user_id = 11695667) AND (user_gift.user_type = 'default'::user_type)) Rows Removed by Filter: 330192 Planning Time: 0.102 ms Execution Time: 135.235 ms(8 rows)
Time: 135.691 ms
limit 10
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 10; QUERY PLAN---------------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=868.20..868.22 rows=10 width=73) (actual time=1.543..1.545 rows=10 loops=1) Output: xxx -> Sort (cost=868.20..870.41 rows=885 width=73) (actual time=1.543..1.543 rows=10 loops=1) Output: xxx Sort Key: user_gift.id DESC Sort Method: top-N heapsort Memory: 27kB -> Index Scan using idx_user_type on yay.user_gift (cost=0.56..849.07 rows=885 width=73) (actual time=0.020..1.366 rows=775 loops=1) Output: xxx Index Cond: (user_gift.user_id = 11695667) Filter: (user_gift.user_type = 'default'::user_type) Planning Time: 0.079 ms Execution Time: 1.564 ms(12 rows)
Time: 1.871 ms
可以看到,两个SQL执行计划不一样:   


  • limit 1语句 :使用主键进行倒序扫描, Index Scan Backward using user_gift_pkey on yay.user_gift
  • limit 10语句 :使用(user_id, user_type)复合索引直接查找用户数据,Index Scan using idx_user_type on yay.user_gift


为什么执行计划不一样?
total cost
其实postgreSQL的执行计划并没有“问题”,因为limit 1的total costLimit (cost=0.43..416.25 rows=1 width=73) 是416,run cost是416-0.43=415.57。而limit 10的total costLimit (cost=868.20..868.22 rows=10 width=73)是868.22。
如果使用Index Scan Backward using user_gift_pkey的方式估算,那么limit 1成本是415, limit 2是415*2=830, limit 3 是 1245,大于868,所以当limit 3的时候会使用Index Scan using idx_user_type扫索引的计划。
 验证
# explain select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 2; QUERY PLAN------------------------------------------------------------------------------------------------------------------------- Limit (cost=0.43..831.95 rows=2 width=73) -> Index Scan Backward using user_gift_pkey on user_gift (cost=0.43..367528.67 rows=884 width=73) Filter: ((user_id = 11695667) AND (user_type = 'default'::user_type))(3 rows)
Time: 0.341 ms# explain select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 3; QUERY PLAN---------------------------------------------------------------------------------------------------------- Limit (cost=866.19..866.20 rows=3 width=73) -> Sort (cost=866.19..868.40 rows=884 width=73) Sort Key: id DESC -> Index Scan using idx_user_type on user_gift (cost=0.56..854.76 rows=884 width=73) Index Cond: (user_id = 11695667) Filter: (user_type = 'default'::user_type)(6 rows)
Time: 0.352 ms

结果显示:


  • limit 2时,执行计划是Index Scan Backward using user_gift_pkey
  • limit 3时,就改变计划了,Index Scan using idx_user_type on user_gift


 


实际执行时间


limit 1时成本估算的是416.25,比limit 10868.22还是要快的。
但是实际
limit 1执行cost是135.691 ms,而limit 10执行cost是1.871 ms,比limit 10慢了70倍!!!
我们重新执行下explain,加上buffers选项
# explain (analyze, buffers, verbose) select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1; QUERY PLAN--------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=0.43..416.29 rows=1 width=73) (actual time=451.542..451.544 rows=1 loops=1) Output: xxx Buffers: shared hit=214402 read=5280 dirtied=2302 I/O Timings: read=205.027 -> Index Scan Backward using user_gift_pkey on yay.user_gift (cost=0.43..368032.94 rows=885 width=73) (actual time=451.540..451.540 rows=1 loops=1) Output: xxx Filter: ((user_gift.user_id = 11695667) AND (user_gift.user_type = 'default'::user_type)) Rows Removed by Filter: 333462 Buffers: shared hit=214402 read=5280 dirtied=2302 I/O Timings: read=205.027 Planning Time: 1.106 ms Execution Time: 451.594 ms(12 rows)
# explain (analyze, buffers, verbose) select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 3; QUERY PLAN----------------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=860.51..860.52 rows=3 width=73) (actual time=14.633..14.634 rows=3 loops=1) Output: xxx Buffers: shared hit=467 read=321 I/O Timings: read=10.112 -> Sort (cost=860.51..862.72 rows=885 width=73) (actual time=14.632..14.632 rows=3 loops=1) Output: xxx Sort Key: user_gift.id DESC Sort Method: top-N heapsort Memory: 25kB Buffers: shared hit=467 read=321 I/O Timings: read=10.112 -> Index Scan using idx_user_type on yay.user_gift (cost=0.56..849.07 rows=885 width=73) (actual time=0.192..14.424 rows=775 loops=1) Output: xxx Index Cond: (user_gift.user_id = 11695667) Filter: (user_gift.user_type = 'default'::user_type) Buffers: shared hit=464 read=321 I/O Timings: read=10.112 Planning Time: 0.111 ms Execution Time: 14.658 ms(18 rows)
可以看出:


  • limit 1时的IO成本I/O Timings: read=205.027Rows Removed by Filter: 333462显示过滤了333462行记录
  • limit 3时IO成本I/O Timings: read=10.112,  


从上面输出Buffers: shared hit=214402 read=5280 dirtied=2302可以看出limit 1的计划从磁盘读取了5280个blocks(pages)才找到符合where条件的记录。
 为什么要读取这么多数据呢?我们来看看统计信息:
schemaname | yaytablename | user_giftattname | idinherited | fnull_frac | 0avg_width | 8n_distinct | -1most_common_vals | most_common_freqs | histogram_bounds | {93,9817,19893,28177,.......}correlation | 0.788011most_common_elems | most_common_elem_freqs | elem_count_histogram |
schemaname | yaytablename | user_giftattname | user_idinherited | fnull_frac | 0avg_width | 4n_distinct | -0.175761most_common_vals | {11576819,10299480,14020501,.......,11695667,......}most_common_freqs | {0.000353333,0.000326667,0.000246667,......,9.33333e-05,......}histogram_bounds | {3,10002181,10005599,10009672,......,11693300,11698290,......}correlation | 0.53375most_common_elems | most_common_elem_freqs | elem_count_histogram |
schemaname | yaytablename | user_giftattname | user_typeinherited | fnull_frac | 0avg_width | 4n_distinct | 3most_common_vals | {default, invalid, deleted}most_common_freqs | {0.997923,0.00194,0.000136667}histogram_bounds | correlation | 0.99763most_common_elems | most_common_elem_freqs | elem_count_histogram |
从统计信息里可以看出:


  • user_id字段的most_common_vals中有11695667(user_id)的值,则可以直接通过其对应的most_common_freqs来得到其selectivity是9.33333e-05;
  • user_type字段为default对应的selectivity是0.997923。 
  • 所以where user_id=11695667 and user_type='default'的selectivity是0.0000933333*0.997923 = 0.0000931394467359。 


那么可以估算出满足where条件的用户数是0.0000931394467359 * 9499740(总用户数) =  884.8,和执行计划(cost=0.43..367528.67 rows=884 width=73)的884行一样。
 而优化器的估算是基于数据分布均匀这个假设的:


  • 从user_gift_pkey(主键id)扫描的话:只要扫描9499740/884=10746行就能找到满足条件的记录,且无须进行排序(order by id desc)
  • 从idx_user_type索引扫描的话:虽然能很快找到此用户的数据,但是需要给884行进行排序,扫描+排序的cost比从主键扫描要高。 


 那么数据分布真的均匀吗?继续查看数据的实际分布:


  • 表最大的page=128709


# select max(ctid) from user_gift; max------------- (128709,29)(1 row)


  • user id=11695667的最大page=124329


# select max(ctid), min(ctid) from user_gift where user_id=11695667; max | min-------------+----------- (124329,22) | (3951,64)(1 row)


  • 表本身的pages和tuples数量


# SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift'; relpages | reltuples----------+------------- 128875 | 9.49974e+06(1 row)
每个page存储的记录数:9.49974e+06 tuples / 128875 pages = 73.713 tuples/page。
计算:表(main table)的B+tree的最大page是128709,而实际用户11695667的最大page是124329,128709 - 124329 = 4380,需要扫描4380个page才能找到符合where条件的记录所在的page,所以过滤的rows是4380 pages * 73.713 tuples/page ≈ 322862。
 实际limit 1时扫描了5280个pages(包含了主键索引的pages),过滤了333462万行记录,和估算的基本一样:
Rows Removed by Filter: 333462 Buffers: shared hit=214402 read=5280 dirtied=2302 I/O Timings: read=205.027
所以,此用户数据分布倾斜了:


  • 优化器假设数据分布均匀,只需要扫描10746个记录
  • 而实际需要扫描322862个记录


那么扫描5280个pages要多久?
需要读取的数据量:5280pages * 8KB/page = 41.2MB的数据。
[root]$ fio -name iops -rw=read -bs=8k -runtime=10 -iodepth=1 -filename /dev/sdb -ioengine libaio -direct=1...Run status group 0 (all jobs): READ: bw=193MiB/s (202MB/s), 193MiB/s-193MiB/s (202MB/s-202MB/s), io=1928MiB (2022MB), run=10001-10001msec
fio结果可以看出,此数据库机器磁盘的顺序读取速度约为 200MB/s,那么扫描40MB数据需要约200ms,与实际需要的时间205ms基本相等。
到这里问题基本定位清楚了:


postgreSQL的优化器认为数据分布是均匀的,只需要倒序扫描很快就找到符合条件的记录,而实际上此用户的数据分布在表的前端,就导致了实际执行start-up time如此慢了。


从内核视角来分析


我们从postgreSQL内核的角度来继续分析几个问题:


  • 优化器如何估算cost
  • 优化器如何统计actual time

表的信息

  • 主键索引



# SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift_pkey'; relpages | reltuples----------+------------- 40035 | 9.49974e+06(1 row)


  • user_id 索引


# SELECT relpages, reltuples FROM pg_class WHERE relname = 'idx_user_type'; relpages | reltuples----------+------------- 113572 | 9.49974e+06(1 row)


  • 表本身的pages是128875


# SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift'; relpages | reltuples----------+------------- 128875 | 9.49974e+06(1 row)


  • user id=11695667的数据775行


=# select count(1) from user_gift where user_id=11695667; count------- 775(1 row)
=# select count(1) from user_gift where user_id=11695667 and user_type = 'default' ; count------- 775(1 row)


  • 树高度


# 主键高度# select * from bt_metap('user_gift_pkey'); magic | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples--------+---------+------+-------+----------+-----------+-------------+------------------------- 340322 | 3 | 412 | 2 | 412 | 2 | 0 | 9.31928e+06(1 row)

// idx_user_type 高度# select * from bt_metap('idx_user_type'); magic | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples--------+---------+-------+-------+----------+-----------+-------------+------------------------- 340322 | 3 | 15094 | 3 | 15094 | 3 | 0 | 9.49974e+06(1 row)


估算cost

start-up cost


postgreSQL对于每种索引的成本估算是不一样的,我们看看B+tree的start-up成本是如何估算的:
// selfuncs.cvoidbtcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages){ ......
descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost; costs.indexStartupCost += descentCost;
...... // This cost is somewhat arbitrarily set at 50x cpu_operator_cost per page touched descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost; costs.indexStartupCost += descentCost;
......}

其实start-up cost估算很简单,只考虑从B+tree的root page遍历到leaf page,且将这个page读入第一个tuple(记录)的cost。
start-up估算公式如下:


  • N(index,tuple) :索引tuples(记录)数量  
  • Height(index) :索引B+tree的高度
  • cpu_operator_cost : 默认值0.0025


使用user_gift_pkey计划的start-up cost
从上面表信息中可以看出:


  • N(index,tuple) :9.49974e+06,    
  • Height(index) :2


所以:


  • 和postgreSQL估算的start-up cost=0.43 一样。


使用idx_user_type计划的start-up cost


  • N(index,tuple) :9.49974e+06,    
  • Height(index) :3


和postgreSQL估算的start-up cost=0.56 一样。


run cost


run cost的估算是比较复杂的,判断的条件非常多,无法用一个固定的公式计算出来,所以这里就不做计算,有兴趣的可以看postgreSQL源码src/backend/optimizer/path/costsize.ccost_index函数。
 
actual start-up time vs estimated start-up cost
刚刚的分析中有一个疑问被忽略了:estimated start-up cost是开始执行计划到从表中读到的第一个tuple的cost(cost is an arbitrary unit);而actual start-up time则是开始执行计划到从表中读取到第一个符合where条件的tuple的时间。这是为什么呢?
SQL处理流程:postgreSQL将SQL转化成AST,然后进行优化,再将AST转成执行器(executor)来实现具体的操作。不进行优化的执行器是这样的:
简化的执行流程如下:


  • index scan executor:扫描到一个tuple,就返回给selection executor
  • selection executor:对tuple进行过滤,如果符合条件则返回给limit executor,如果不符合则继续调用index scan executor
  • limit executor:当达到limit限制则将数据返回给projection executor
  • projection executor:过滤掉非select列的数据


那么如果进行优化,一般会将selection executorprojection executor合并到index scan executor中执行,以减少数据在executor之间的传递。
优化后的执行流程:


  • index scan executor:扫描到tuple,然后进行selection过滤,如果符合条件就进行projection再返回给limit,如果不符合条件,则继续扫描
  • limit executor:当达到limit限制则将数据返回


而通过下面代码可以看出,postgreSQL对于执行时间的统计是基于executor的,
// src/backend/executor/execProcnode.cstatic TupleTableSlot *ExecProcNodeInstr(PlanState *node){ TupleTableSlot *result; InstrStartNode(node->instrument); result = node->ExecProcNodeReal(node);
// 统计执行指标 InstrStopNode(node->instrument, TupIsNull(result) ? 0.0 : 1.0); return result;}
所以actual time的start-up是从启动executor直到扫描到符合where语句的第一条结果为止。
再看看实际的函数调用栈,user_id=xxx的过滤已经下沉到index scan executor里面了。
---> int4eq(FunctionCallInfo fcinfo) (/home/ken/cpp/postgres/src/backend/utils/adt/int.c:379) ExecInterpExpr(ExprState * state, ExprContext * econtext, _Bool * isnull) (/home/ken/cpp/postgres/src/backend/executor/execExprInterp.c:704) ExecInterpExprStillValid(ExprState * state, ExprContext * econtext, _Bool * isNull) (/home/ken/cpp/postgres/src/backend/executor/execExprInterp.c:1807) ExecEvalExprSwitchContext(ExprState * state, ExprContext * econtext, _Bool * isNull) (/home/ken/cpp/postgres/src/include/executor/executor.h:322)---> ExecQual(ExprState * state, ExprContext * econtext) (/home/ken/cpp/postgres/src/include/executor/executor.h:391) ExecScan(ScanState * node, ExecScanAccessMtd accessMtd, ExecScanRecheckMtd recheckMtd) (/home/ken/cpp/postgres/src/backend/executor/execScan.c:227)---> ExecIndexScan(PlanState * pstate) (/home/ken/cpp/postgres/src/backend/executor/nodeIndexscan.c:537) ExecProcNodeInstr(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:466) ExecProcNodeFirst(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:450) ExecProcNode(PlanState * node) (/home/ken/cpp/postgres/src/include/executor/executor.h:248)---> ExecLimit(PlanState * pstate) (/home/ken/cpp/postgres/src/backend/executor/nodeLimit.c:96) ExecProcNodeInstr(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:466) ExecProcNodeFirst(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:450) ExecProcNode(PlanState * node) (/home/ken/cpp/postgres/src/include/executor/executor.h:248) ExecutePlan(EState * estate, PlanState * planstate, _Bool use_parallel_mode, CmdType operation, _Bool sendTuples, uint64 numberTuples, ScanDirection direction, DestReceiver * dest, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:1632) standard_ExecutorRun(QueryDesc * queryDesc, ScanDirection direction, uint64 count, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:350) ExecutorRun(QueryDesc * queryDesc, ScanDirection direction, uint64 count, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:294) ExplainOnePlan(PlannedStmt * plannedstmt, IntoClause * into, ExplainState * es, const char * queryString, ParamListInfo params, QueryEnvironment * queryEnv, const instr_time * planduration, const BufferUsage * bufusage) (/home/ken/cpp/postgres/src/backend/commands/explain.c:571) ExplainOneQuery(Query * query, int cursorOptions, IntoClause * into, ExplainState * es, const char * queryString, ParamListInfo params, QueryEnvironment * queryEnv) (/home/ken/cpp/postgres/src/backend/commands/explain.c:404) ExplainQuery(ParseState * pstate, ExplainStmt * stmt, ParamListInfo params, DestReceiver * dest) (/home/ken/cpp/postgres/src/backend/commands/explain.c:275)
下面代码是scan的实现,其中的ExecQual(qual, econtext)是对tuple进行过滤,因为selection已经合并到scan中了。
TupleTableSlot *ExecScan(ScanState *node, ExecScanAccessMtd accessMtd, ExecScanRecheckMtd recheckMtd){ ...... for (;;) { TupleTableSlot *slot; slot = ExecScanFetch(node, accessMtd, recheckMtd); ...... econtext->ecxt_scantuple = slot;
// Note : selection判断 if (qual == NULL || ExecQual(qual, econtext)) { if (projInfo) { return ExecProject(projInfo); } else { return slot; } } else InstrCountFiltered1(node, 1); }}



解决方案

禁用走主键扫描


既然计划走的是user_gift_pkey倒序扫描,那么我们可以手动避免优化器使用这个索引。
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id+0 desc limit 1;
order by id改成order by id+0,由于id+0是个表达式所以优化器就就不会使用user_gift_pkey这个索引了。
这个方案不适合所有场景,如果数据分布均匀的话则某些情况下使用user_gift_pkey扫描更加合理。


增加(user_id, id)索引


create index idx_user_id on user_gift(user_id, id);
通过增加where条件列和排序键的复合索引,来避免走主键扫描。


写在最后


从排除缓存因素,分析查询计划,定位数据分布倾斜,到调试内核源码来进一步确定原因,最终成功解决性能问题。通过这个有趣的SQL优化经历,相信能给大家带来收获。

 END 

分享一下我写的《10万字Springboot经典学习笔记》中,点击下面小卡片,进入【Java秃头哥】,回复:笔记,即可免费获取。

点赞是最大的支持 
浏览 66
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报