Hive SQL经典优化案例

共 4427字,需浏览 9分钟

 ·

2020-09-24 23:19

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

大数据技术与架构
点击右侧关注,大数据开发领域最强公众号!

大数据真好玩
点击右侧关注,大数据真好玩!


HiveSQL经典优化案例一:

1.1 将要执行的查询(执行了 1个多小时才出结果):

SELECT dt as DATA_DATE,STRATEGY,AB_GROUP,SOURCE,    count(distinct case when lower(event) not like '%push%' and event!='corner_mark_show' then udid else null end) as DAU,    count(case when event='client_show' then 1 else null end) as TOTAL_VSHOW,    count(distinct case when event='client_show' then vid else null end) as TOTAL_VIDEO_VSHOW,    count(case when event='video_play' then 1 else null end) as TOTAL_VV_VP,    count(distinct case when event='video_play' then udid else null end) as TOTAL_USERS_VP,    count(case when event='effective_play' then 1 else null end) as TOTAL_VV_EP,    count(distinct case when event='effective_play' then udid else null end) as TOTAL_USERS_EP,    sum(case when event='video_over' then duration else 0 end) as TOTAL_DURATION,    count(case when event='video_over' then 1 else null end) as TOTAL_VOVER,    sum(case when event='video_over' then play_cnts else 0 end) as TOTAL_VOVER_PCNTS,    count(case when event='push_video_clk' then 1 else null end) as TOTAL_PUSH_VC,    count(distinct case when event='app_start' and body_source = 'push' then udid else null end) as TOTAL_PUSH_START,    count(case when event='post_comment' then 1 else null end) as TOTAL_REPLY,    count(distinct case when event='post_comment' then udid else null end) as TOTAL_USERS_REPLY    FROM dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zklgroup by dt,strategy,ab_group,source;

1.2 查询语句涉及到的表有 7.7亿+ 数据。(查询如下)

jdbc:hive2://ks-hdp-master-01.dns.rightpad (default)> select count(*) from dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl;

1.3 优化思路:既然将要执行的查询是按照 dt, strategy, ab_group, source 这4个字段分组, 那么在建表的时候,就按这四个字段中的N个(1 或 2 或 3 或4)个字段组合分区,直接让 count(distinct xx) 之类的查询定位到“更少的数据子集”,其执行效率就应该更高了(不需要每个子任务均从 7.7亿+ 的数据中(去重)统计)。


1.4 先看每个字段将会有多少分区(因为 Hive 表分区也不宜过多,一般一个查询语句涉及到的 hive分区 应该控制在2K内)

jdbc:hive2://ks-hdp-master-01.dns.rightpad (default)> select count(distinct dt) as dis_dt, count(distinct strategy) as dis_strategy, count(distinct ab_group) as dis_ab_group, count(distinct source) as dis_sourcefrom dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl;


[hue@ks-hdp-client-v02 10:55:08 /usr/local/hue]$ pythonPython 2.7.12 (default, Dec 4 2017, 14:50:18)[GCC 5.4.0 20160609] on linux2Type "help", "copyright", "credits" or "license" for more information.>>> 2*14*722016-- 2016 个分区还可以接受。

1.5 根据原表,新建分区表,并将原表数据插入新表:

show create table dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl;
jdbc:hive2://ks-hdp-master-01.dns.rightpad (default)> show create table dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl;

创建新表:按 dt,source,stragegy,ab_group 分区(注意先后顺序,一般习惯分区数越少的越靠前,根据1.5的查询可知:dt=1,source=2,strategy=14,ab_group=72)

create external table `dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_lym`(  event string,  udid string,  vid string,  duration string,  body_source string,  play_cnts string)PARTITIONED BY (  dt string,  source string,  strategy string,  ab_group string);

将原表数据插入新表:

insert into `dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_lym` partition(dt,source,strategy,ab_group)select event,udid,vid,duration,body_source,play_cnts,dt,source,strategy,ab_groupfrom `dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl`;

核对两表的数据是否一致:

1.6 基于新表执行查询(执行5分钟出结果):


HiveSQL经典优化案例二:

问题描述:一个复杂的SQL,查询执行一段时间后报错:基本上是查不出来; 

分析函数对于大表来说不是 hive的强项,这个时候我们将其分解成很多子集,并且合理利用 hive 分区表的优势,然后去 join 。


2.1 将要执行的查询

create table bi_tmp.aloha_UserLoyalty_190301_190303 as     select aid, imei, idfa, udid, event, duration, dt, time_local, hour, source,         first_value(time_local) over(partition by udid, event order by time_local) as first_time,        last_value(time_local) over(partition by udid, event order by time_local) as last_time,        count(time_local) over(partition by udid, event, dt) as event_count_per_day,        sum(duration) over(partition by udid, event, dt) as event_duration_each_day    from dwb_v8sp.event_column_info_new_hour    where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment',         'comment_success')        and dt >= '2019-03-01' and dt <= '2019-03-03';
select count(*) from dwb_v8sp.event_column_info_new_hourwhere event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')and dt >= '2019-03-01' and dt <= '2019-03-03';

select count(distinct event) as dis_eventfrom dwb_v8sp.event_column_info_new_hourwhere event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')and dt >= '2019-03-01' and dt <= '2019-03-03';

分解成三个子集,并保存到三张表:  bi_tmp.zyt1, bi_tmp.zyt2, bi_tmp.zyt3

-- drop table if exists bi_tmp.zyt1;create table bi_tmp.zyt1 partitioned by(event)asselect udid,        min(time_local) as first_time,       max(time_local) as last_time,       eventfrom dwb_v8sp.event_column_info_new_hourwhere event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')and dt >= '2019-03-01' and dt <= '2019-03-03'group by udid, event;
-- drop table if exists bi_tmp.zyt2 purge;create table bi_tmp.zyt2 partitioned by(dt,event)asselect udid, count(time_local) as event_count_per_day, sum(duration) as event_duration_each_day, dt, eventfrom dwb_v8sp.event_column_info_new_hourwhere event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')and dt >= '2019-03-01' and dt <= '2019-03-03'group by udid, dt, event;
create table bi_tmp.zyt3 partitioned by(dt,event)as select aid, imei, idfa, udid, duration, time_local, hour, source, dt, eventfrom dwb_v8sp.event_column_info_new_hour t3 where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success') and dt >= '2019-03-01' and dt <= '2019-03-03';
-- 插入目标表:create table bi_tmp.aloha_UserLoyalty_190301_190303 as select t3.aid, t3.imei, t3.idfa, t3.udid, t3.event, t3.duration, t3.dt, t3.time_local, t3.hour, t3.source, t1.first_time, t1.last_time, t2.event_count_per_day, t2.event_duration_each_day from bi_tmp.zyt1 t1 join bi_tmp.zyt2 t2 on t1.event=t2.event and t1.udid=t2.udid join bi_tmp.zyt3 t3 on t2.dt=t3.dt and t2.event= t3.event and t2.udid=t3.udid;
-- 验证数据:(与上面的查询记录行数对的上)


HiveSQL经典优化案例三:

如下SQL,用到了 PERCENTILE_APPROX 函数,问题描述:如下SQL,用到了 PERCENTILE_APPROX 函数,个人初步分析认为:由于用到该函数的次数太多,导致性能严重下降。 

我仔细查了一下该函数,发现:它是支持“数组传参”的,那么就不难找到优化该SQL的方法了。


3.1 原SQL性能测试:

3.2 优化后的SQL,性能测试:

优化后的SQL,性能提升了4倍多。

版权声明:

本文为大数据技术与架构整理,原作者独家授权。未经原作者允许转载追究侵权责任。
编辑|冷眼丶
微信公众号|import_bigdata


欢迎点赞+收藏+转发朋友圈素质三连


文章不错?点个【在看】吧! ?

浏览 49
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报