「原理」AB测试-详细过程和原理解读
俊红的数据分析之路
共 4062字,需浏览 9分钟
·
2021-06-07 20:39
这篇我们来详细讲讲AB测试的原理和具体的过程。
AB测试原理简介
AB测试最核心的原理,就四个字:假设检验。检验我们提出的假设是否正确。对应到AB测试中,就是检验实验组&对照组,指标是否有显著差异。
既然是假设检验,那么就是先假设,再收集数据,最后根据收集的数据来做检验。
先来说说假设。
假设一般成对出现,分为零假设 和 备选假设。
在AB测试中,零假设是:实验组&对照组 指标相同,无显著差异;备选假设则相反,实验组&对照组 指标不同,有显著差异。
举个例子。我们优化了某算法,想提高页面的点击率。针对这个场景的AB测试,零假设就是 新算法&老算法的页面点击率无明显差异,备选假设是 新算法&老算法的页面点击率有显著差异。
再来说说检验。
一般来说,我们是通过具体的指标属性来找寻相应的检验方法。那么问题来了,指标如何分类呢?
指标可以分为两种类别:
1、绝对值类指标。也就是我们平常直接计算就能得到的,比如DAU,点击次数等。我们的一般都是统计该指标在一段时间内的均值或者汇总值,不存在两个值之间还要相互计算。
2、相对值类指标。与绝对值类指标相反,我们不能直接计算得到。比如某页面的CTR,我们是用 页面点击数 / 页面展现数。我们要计算点击数和展现数,两者相除才能得到该指标。类似的,还有XX转化率,XX点击率,XX购买率一类的。我们做的AB实验,大部分情况下都想提高这类指标。
根据指标我们可以知道,该如何计算最小样本量,以及实验周期,以及对应的检验方法。
AB测试详细流程
知识点总结
评论