Python数据分析之聚合与透视表

◆ ◆ ◆ ◆ ◆
import pymysqlimport pandas as pdimport matplotlib.pyplot as plt# 建立连接conn = pymysql.connect('localhost','username','password','database')# 读取SQL为dfsql = 'select * from table'df = pd.read_sql(sql,con=conn)
第二步:数据聚合
# 查看基本属性print(df.index)print(df.columns)print(df.info())# 修改时间格式df['stat_month'] = pd.to_datetime(df['stat_month'],format='%Y%m')# 设置索引df.set_index('stat_month',inplace = True)print(df.head())# 只看一个月份的df_grp1601= df['20160101'].groupby(['brand','areaname'],as_index = False)['profit'].sum()print(df_grp1601)df_grpbrand = df_grp1601.groupby('brand').sum()print(df_grpbrand[df_grpbrand>200000].plot(kind = 'bar'))

pd.pivot_table(df['20160101':'20161201'],values = 'profit',\index = ['stat_month','brand'],\columns ='areaname',aggfunc='sum' )

祝大家早日富可敌国!
记得
点
在看
哦
Python数据分析神器Pandas与数据库查询语言SQL的对比

评论
