自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据

拓端数据

共 2129字,需浏览 5分钟

 ·

2022-11-09 10:15

全文链接:http://tecdat.cn/?p=12310


新冠肺炎的爆发让今年的春节与往常不同。与此同时,新闻记录下了这场疫情发展的时间轴点击文末“阅读原文”获取完整代码数据


为此我们分析了疫情相关的新闻内容、发布时期以及发布内容的主题和情感倾向这些方面的数据,希望通过这些数据,能对这场疫情有更多的了解。

相关视频




新闻对疫情相关主题的情感倾向

通过对疫情相关的新闻进行主题分析和情感分析,我们可以得到每个主题的关键词以及情感分布。

图表1

症状检测主题的新闻内容表达出最多积极情感,该话题下讨论的是医院中检测患者的症状,其次是城市服务以及学校相关的新闻内容,讨论了商店关闭,社区隔离和学校延迟开学等话题,生活主题也表达出较多的积极情感(关键词:时间、家庭),疫情增加了家人相处的时间(图1)。



点击标题查阅往期相关内容


R语言自然语言处理(NLP):情感分析新闻文本数据


左右滑动查看更多


01

02

03

04


新闻表达的情感倾向随时间变化

考虑到新闻发布的时间、新闻相关的话题因素,图2显示了通过情感交叉分析得到的结果。

图表2

从话题排名来看,不同时间段的新闻中最热门的话题都有经济、出行和政治。从情感分布来看,1月份的经济主题新闻表达出较多的负面情绪(如股市因对冠状病毒的日益关注而下跌)。3月份随着疫情逐渐好转,城市主题新闻(如疫情期间保证商店服务和生产经营)的热度排名超过防护主题(关键词:口罩,洗手,健康等)。从1月到3月,各个主题下的积极情感比例都在不断增加。


新闻对不同主题关键词的关注度

考虑到不同话题的关注度,图3显示了高频关键词的分布。

图表3

从中我们可以看到疫情相关的新闻中最关注的方面,首先是健康,家庭和隔离和出行,其中健康出现的频率最高。然后关注的话题,包含冠状病毒、疫情期间的工作和病毒检测。其次关注的话题包含区分健康和感染的症状。其他关注的热门关键词包含学校、商业、旅行和经济等。

本文章中的所有信息(包括但不限于分析、预测、建议、数据、图表等内容)仅供参考,拓端数据(tecdat)不因文章的全部或部分内容产生的或因本文章而引致的任何损失承担任何责任。




本文摘选自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据,点击“阅读原文”获取全文完整资料。





本文中的新闻数据分享到会员群,扫描下面二维码即可加群!


点击标题查阅往期内容

【视频】文本挖掘:主题模型(LDA)及R语言实现分析游记数据
NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据
Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集
自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据
R语言对NASA元数据进行文本挖掘的主题建模分析
R语言文本挖掘、情感分析和可视化哈利波特小说文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
用于NLP的Python:使用Keras进行深度学习文本生成
长短期记忆网络LSTM在时间序列预测和文本分类中的应用
用Rapidminer做文本挖掘的应用:情感分析
R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究
R语言对推特twitter数据进行文本情感分析
Python使用神经网络进行简单文本分类
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
R语言文本挖掘使用tf-idf分析NASA元数据的关键字
R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据
Python使用神经网络进行简单文本分类
R语言自然语言处理(NLP):情感分析新闻文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
R语言对推特twitter数据进行文本情感分析
R语言中的LDA模型:对文本数据进行主题模型topic modeling分析
R语言文本主题模型之潜在语义分析(LDA:Latent Dirichlet Allocation)
R语言对NASA元数据进行文本挖掘的主题建模分析
R语言文本挖掘、情感分析和可视化哈利波特小说文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
用于NLP的Python:使用Keras进行深度学习文本生成
长短期记忆网络LSTM在时间序列预测和文本分类中的应用
用Rapidminer做文本挖掘的应用:情感分析
R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究
R语言对推特twitter数据进行文本情感分析
Python使用神经网络进行简单文本分类
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
R语言文本挖掘使用tf-idf分析NASA元数据的关键字
R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据
Python使用神经网络进行简单文本分类
R语言自然语言处理(NLP):情感分析新闻文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
R语言对推特twitter数据进行文本情感分析
R语言中的LDA模型:对文本数据进行主题模型topic modeling分析
R语言文本主题模型之潜在语义分析(LDA:Latent Dirichlet Allocation)


浏览 21
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报