做时间序列预测没必要深度学习!GBDT性能超DNN
机器学习实验室
共 3560字,需浏览 8分钟
·
2022-03-07 20:47
在深度学习方法应用广泛的今天,所有领域是不是非它不可呢?其实未必,在时间序列预测任务上,简单的机器学习方法能够媲美甚至超越很多 DNN 模型。
对于用于时间序列预测的基于窗口的学习框架来说,精心配置 GBRT 模型的输入和输出结构有什么效果?
一个虽简单但配置良好的 GBRT 模型与 SOTA 深度学习时间序列预测框架相比如何?
主题:只考虑时间序列预测领域的研究;
数据结构:专用数据类型,但如异步时间序列和概念化为图形的数据被排除在外;
可复现:数据、源代码应公开。如果源代码不可用,但实验设置有清晰的文档,研究也可以从实验中复制结果;
计算的可行性:研究中得出的结果能够以易于处理的方式复现,并在合理的时间内可计算。
往期精彩:
评论