深度学习基础算法全解
Jack Cui
共 2148字,需浏览 5分钟
·
2021-01-06 14:02
实践项目2 :目标检测
目标检测任务需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),是从图像分类过渡来的任务,目标检测的应用主要包括人脸检测、安防监控、交通疏导等。本次实践主要讲解基于CNN的目标检测的开山鼻祖:Faster RCNN。会从思想来源(分类任务到检测的过渡)、网络搭建和网络预测三个方面展开,熟悉目标检测的基础框架。
实践项目3:图像分类
本实践所用数据集为1000类的ImageNet数据集,共计120张样本。会从模型搭建、模型训练和网络预测三个方面进行展开,熟悉整个图像分类框架。
本章节通过两个典型的回归与分类问题,可以初步了解到神经网络的能力,通过从头到尾手写代码完成训练,也能了解神经网络大概的工作步骤,为后续章节中PyTorch的学习积累经验。
实践项目5: 文本分类
本次实践利用标注好的旅游文本情感数据,利用课程讲解的卷积神经网络与循环神经网络,或是两者的搭配来创建一个文本情感分类模型,从而训练出一个实际可用的分类模型,以此来支撑实际的业务需要。(详细内容添加文末客服领取)
评论