面试前必看的十大排序算法

共 16059字,需浏览 33分钟

 ·

2021-08-26 18:51

点击上方蓝字关注我设为星标


绪论

身为程序员,十大排序是是所有合格程序员所必备和掌握的,并且热门的算法比如快排、归并排序还可能问的比较细致,对算法性能和复杂度的掌握有要求。bigsai作为一个负责任的Java和数据结构与算法方向的小博主,在这方面肯定不能让读者们有所漏洞。跟着本篇走,带你捋一捋常见的十大排序算法,轻轻松松掌握!

首先对于排序来说大多数人对排序的概念停留在冒泡排序或者JDK中的Arrays.sort(),手写各种排序对很多人来说都是一种奢望,更别说十大排序算法了,不过还好你遇到了本篇文章!

对于排序的分类,主要不同的维度比如复杂度来分、内外部、比较非比较等维度来分类。我们正常讲的十大排序算法是内部排序,我们更多将他们分为两大类:基于「比较和非比较」这个维度去分排序种类。

  • 「非比较类的有桶排序、基数排序、计数排序」。也有很多人将排序归纳为8大排序,那就是因为基数排序、计数排序是建立在桶排序之上或者是一种特殊的桶排序,但是基数排序和计数排序有它特有的特征,所以在这里就将他们归纳为10种经典排序算法。而比较类排序也可分为
  • 比较类排序也有更细致的分法,有基于交换的、基于插入的、基于选择的、基于归并的,更细致的可以看下面的脑图。
脑图

交换类

冒泡排序

冒泡排序,又称起泡排序,它是一种基于交换的排序典型,也是快排思想的基础,冒泡排序是一种稳定排序算法,时间复杂度为O(n^2).基本思想是:「循环遍历多次每次从前往后把大元素往后调,每次确定一个最大(最小)元素,多次后达到排序序列。」(或者从后向前把小元素往前调)。

具体思想为(把大元素往后调):

  • 从第一个元素开始往后遍历,每到一个位置判断是否比后面的元素大,如果比后面元素大,那么就交换两者大小,然后继续向后,这样的话进行一轮之后就可以保证「最大的那个数被交换交换到最末的位置可以确定」
  • 第二次同样从开始起向后判断着前进,如果当前位置比后面一个位置更大的那么就和他后面的那个数交换。但是有点注意的是,这次并不需要判断到最后,只需要判断到倒数第二个位置就行(因为第一次我们已经确定最大的在倒数第一,这次的目的是确定倒数第二)
  • 同理,后面的遍历长度每次减一,直到第一个元素使得整个元素有序。

例如2 5 3 1 4排序过程如下:


实现代码为:

public void  maopaosort(int[] a) {
  // TODO Auto-generated method stub
  for(int i=a.length-1;i>=0;i--)
  {
    for(int j=0;j<i;j++)
    {
      if(a[j]>a[j+1])
      {
        int team=a[j];
        a[j]=a[j+1];
        a[j+1]=team;
      }
    }
  }
}

快速排序

快速排序是对冒泡排序的一种改进,采用递归分治的方法进行求解。而快排相比冒泡是一种不稳定排序,时间复杂度最坏是O(n^2),平均时间复杂度为O(nlogn),最好情况的时间复杂度为O(nlogn)。

对于快排来说,「基本思想」是这样的

  • 快排需要将序列变成两个部分,就是「序列左边全部小于一个数」「序列右面全部大于一个数」,然后利用递归的思想再将左序列当成一个完整的序列再进行排序,同样把序列的右侧也当成一个完整的序列进行排序。
  • 其中这个数在这个序列中是可以随机取的,可以取最左边,可以取最右边,当然也可以取随机数。但是「通常」不优化情况我们取最左边的那个数。


实现代码为:

public void quicksort(int [] a,int left,int right)
{
  int low=left;
  int high=right;
  //下面两句的顺序一定不能混,否则会产生数组越界!!!very important!!!
  if(low>high)//作为判断是否截止条件
    return;
  int k=a[low];//额外空间k,取最左侧的一个作为衡量,最后要求左侧都比它小,右侧都比它大。
  while(low<high)//这一轮要求把左侧小于a[low],右侧大于a[low]。
  {
    while(low<high&&a[high]>=k)//右侧找到第一个小于k的停止
    {
      high--;
    }
    //这样就找到第一个比它小的了
    a[low]=a[high];//放到low位置
    while(low<high&&a[low]<=k)//在low往右找到第一个大于k的,放到右侧a[high]位置
    {
      low++;
    }
    a[high]=a[low];   
  }
  a[low]=k;//赋值然后左右递归分治求之
  quicksort(a, left, low-1);
  quicksort(a, low+1, right);  
}

插入类排序

直接插入排序

直接插入排序在所有排序算法中的是最简单排序方式之一。和我们上学时候 从前往后、按高矮顺序排序,那么一堆高低无序的人群中,从第一个开始,如果前面有比自己高的,就直接插入到合适的位置。「一直到队伍的最后一个完成插入」整个队列才能满足有序。

直接插入排序遍历比较时间复杂度是每次O(n),交换的时间复杂度每次也是O(n),那么n次总共的时间复杂度就是O(n^2)。有人会问折半(二分)插入能否优化成O(nlogn),答案是不能的。因为二分只能减少查找复杂度每次为O(logn),而插入的时间复杂度每次为O(n)级别,这样总的时间复杂度级别还是O(n^2).

插入排序的具体步骤:

  • 选取当前位置(当前位置前面已经有序) 目标就是将当前位置数据插入到前面合适位置。
  • 向前枚举或者二分查找,找到待插入的位置。
  • 移动数组,赋值交换,达到插入效果。


实现代码为:

public void insertsort (int a[])
{
  int team=0;
  for(int i=1;i<a.length;i++)
  {
    System.out.println(Arrays.toString(a));
    team=a[i];
    for(int j=i-1;j>=0;j--)
    {

      if(a[j]>team)
      {
        a[j+1]=a[j];
        a[j]=team; 
      } 
      else {
        break;
      }
    }
  } 
}

希尔排序

直接插入排序因为是O(n^2),在数据量很大或者数据移动位次太多会导致效率太低。很多排序都会想办法拆分序列,然后组合,希尔排序就是以一种特殊的方式进行预处理,考虑到了「数据量和有序性」两个方面纬度来设计算法。使得序列前后之间小的尽量在前面,大的尽量在后面,进行若干次的分组别计算,最后一组即是一趟完整的直接插入排序。

对于一个长串,希尔首先将序列分割(非线性分割)而是「按照某个数模」(取余这个类似报数1、2、3、4。1、2、3、4)这样形式上在一组的分割先「各组分别进行直接插入排序」,这样「很小的数在后面」可以通过「较少的次数移动到相对靠前」的位置。然后慢慢合并变长,再稍稍移动。

因为每次这样插入都会使得序列变得更加有序,稍微有序序列执行直接插入排序成本并不高。所以这样能够在合并到最终的时候基本小的在前,大的在后,代价越来越小。这样希尔排序相比插入排序还是能节省不少时间的。


实现代码为:

public void shellsort (int a[])
{
  int d=a.length;
  int team=0;//临时变量
  for(;d>=1;d/=2)//共分成d组
    for(int i=d;i<a.length;i++)//到那个元素就看这个元素在的那个组即可
    {
      team=a[i];
      for(int j=i-d;j>=0;j-=d)
      {    
        if(a[j]>team)
        {
          a[j+d]=a[j];
          a[j]=team; 
        }
        else {
          break;
        }
      }
    } 
}

选择类排序

简单选择排序

简单选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到「已排序序列的末尾」。以此类推,直到所有元素均排序完毕。


实现代码为:

public void selectSort(int[] arr) {
  for (int i = 0; i < arr.length - 1; i++) {
    int min = i; // 最小位置
    for (int j = i + 1; j < arr.length; j++) {
      if (arr[j] < arr[min]) {
        min = j; // 更换最小位置
      }
    }
    if (min != i) {
      swap(arr, i, min); // 与第i个位置进行交换
    }
  }
}
private void swap(int[] arr, int i, int j) {
  int temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
}

堆排序

对于堆排序,首先是建立在堆的基础上,堆是一棵完全二叉树,还要先认识下大根堆和小根堆,完全二叉树中所有节点均大于(或小于)它的孩子节点,所以这里就分为两种情况

  • 如果所有节点「大于」孩子节点值,那么这个堆叫做「大根堆」,堆的最大值在根节点。
  • 如果所有节点「小于」孩子节点值,那么这个堆叫做「小根堆」,堆的最小值在根节点。


堆排序首先就是「建堆」,然后再是调整。对于二叉树(数组表示),我们从下往上进行调整,从「第一个非叶子节点」开始向前调整,对于调整的规则如下:

建堆是一个O(n)的时间复杂度过程,建堆完成后就需要进行删除头排序。给定数组建堆(creatHeap)

①从第一个非叶子节点开始判断交换下移(shiftDown),使得当前节点和子孩子能够保持堆的性质

②但是普通节点替换可能没问题,对如果交换打破子孩子堆结构性质,那么就要重新下移(shiftDown)被交换的节点一直到停止。


堆构造完成,取第一个堆顶元素为最小(最大),剩下左右孩子依然满足堆的性值,但是缺个堆顶元素,如果给孩子调上来,可能会调动太多并且可能破坏堆结构。

①所以索性把最后一个元素放到第一位。这样只需要判断交换下移(shiftDown),不过需要注意此时整个堆的大小已经发生了变化,我们在逻辑上不会使用被抛弃的位置,所以在设计函数的时候需要附带一个堆大小的参数。

②重复以上操作,一直堆中所有元素都被取得停止。


而堆算法复杂度的分析上,之前建堆时间复杂度是O(n)。而每次删除堆顶然后需要向下交换,每个个数最坏为logn个。这样复杂度就为O(nlogn).总的时间复杂度为O(n)+O(nlogn)=O(nlogn).

实现代码为:

static void swap(int arr[],int m,int n)
{
  int team=arr[m];
  arr[m]=arr[n];
  arr[n]=team;
}
//下移交换 把当前节点有效变换成一个堆(小根)
static void shiftDown(int arr[],int index,int len)//0 号位置不用
{
  int leftchild=index*2+1;//左孩子
  int rightchild=index*2+2;//右孩子
  if(leftchild>=len)
    return;
  else if(rightchild<len&&arr[rightchild]<arr[index]&&arr[rightchild]<arr[leftchild])//右孩子在范围内并且应该交换
  {
    swap(arr, index, rightchild);//交换节点值
    shiftDown(arr, rightchild, len);//可能会对孩子节点的堆有影响,向下重构
  }
  else if(arr[leftchild]<arr[index])//交换左孩子
  {
    swap(arr, index, leftchild);
    shiftDown(arr, leftchild, len);
  }
}
//将数组创建成堆
static void creatHeap(int arr[])
{
  for(int i=arr.length/2;i>=0;i--)
  {
    shiftDown(arr, i,arr.length);
  }
}
static void heapSort(int arr[])
{
  System.out.println("原始数组为         :"+Arrays.toString(arr));
  int val[]=new int[arr.length]; //临时储存结果
  //step1建堆
  creatHeap(arr);
  System.out.println("建堆后的序列为  :"+Arrays.toString(arr));
  //step2 进行n次取值建堆,每次取堆顶元素放到val数组中,最终结果即为一个递增排序的序列
  for(int i=0;i<arr.length;i++)
  {
    val[i]=arr[0];//将堆顶放入结果中
    arr[0]=arr[arr.length-1-i];//删除堆顶元素,将末尾元素放到堆顶
    shiftDown(arr, 0, arr.length-i);//将这个堆调整为合法的小根堆,注意(逻辑上的)长度有变化
  }
  //数值克隆复制
  for(int i=0;i<arr.length;i++)
  {
    arr[i]=val[i];
  }
  System.out.println("堆排序后的序列为:"+Arrays.toString(arr));

}

归并类排序

在归并类排序一般只讲归并排序,但是归并排序也分二路归并、多路归并,这里就讲较多的二路归并排序,且用递归方式实现。

归并排序

归并和快排都是「基于分治算法」的,分治算法其实应用挺多的,很多分治会用到递归,但事实上「分治和递归是两把事」。分治就是分而治之,可以采用递归实现,也可以自己遍历实现非递归方式。而归并排序就是先将问题分解成代价较小的子问题,子问题再采取代价较小的合并方式完成一个排序。

至于归并的思想是这样的:

  • 第一次:整串先进行划分成一个一个单独,第一次是将序列中(1 2 3 4 5 6---)两两归并成有序,归并完(xx xx xx xx----)这样局部有序的序列。
  • 第二次就是两两归并成若干四个(1 2 3 4 5 6 7 8 ----)「每个小局部是有序的」
  • 就这样一直到最后这个串串只剩一个,然而这个耗费的总次数logn。每次操作的时间复杂的又是O(n)。所以总共的时间复杂度为O(nlogn).


合并为一个O(n)的过程:


实现代码为:

private static void mergesort(int[] array, int left, int right) {
  int mid=(left+right)/2;
  if(left<right)
  {
    mergesort(array, left, mid);
    mergesort(array, mid+1, right);
    merge(array, left,mid, right);
  }
}

private static void merge(int[] array, int l, int mid, int r) {
  int lindex=l;int rindex=mid+1;
  int team[]=new int[r-l+1];
  int teamindex=0;
  while (lindex<=mid&&rindex<=r) {//先左右比较合并
    if(array[lindex]<=array[rindex])
    {
      team[teamindex++]=array[lindex++];
    }
    else {    
      team[teamindex++]=array[rindex++];
    }
  }
  while(lindex<=mid)//当一个越界后剩余按序列添加即可
  {
    team[teamindex++]=array[lindex++];

  }
  while(rindex<=r)
  {
    team[teamindex++]=array[rindex++];
  } 
  for(int i=0;i<teamindex;i++)
  {
    array[l+i]=team[i];
  }

}

桶类排序

桶排序

桶排序是一种用空间换取时间的排序,桶排序重要的是它的思想,而不是具体实现,时间复杂度最好可能是线性O(n),桶排序不是基于比较的排序而是一种分配式的。桶排序从字面的意思上看:

  • 桶:若干个桶,说明此类排序将数据放入若干个桶中。
  • 桶:每个桶有容量,桶是有一定容积的容器,所以每个桶中可能有多个元素。
  • 桶:从整体来看,整个排序更希望桶能够更匀称,即既不溢出(太多)又不太少。

桶排序的思想为:「将待排序的序列分到若干个桶中,每个桶内的元素再进行个别排序。」  当然桶排序选择的方案跟具体的数据有关系,桶排序是一个比较广泛的概念,并且计数排序是一种特殊的桶排序,基数排序也是建立在桶排序的基础上。在数据分布均匀且每个桶元素趋近一个时间复杂度能达到O(n),但是如果数据范围较大且相对集中就不太适合使用桶排序。


实现一个简单桶排序:

import java.util.ArrayList;
import java.util.List;
//微信公众号:bigsai
public class bucketSort {
 public static void main(String[] args) {
  int a[]= {1,8,7,44,42,46,38,34,33,17,15,16,27,28,24};
  List[] buckets=new ArrayList[5];
  for(int i=0;i<buckets.length;i++)//初始化
  {
   buckets[i]=new ArrayList<Integer>();
  }
  for(int i=0;i<a.length;i++)//将待排序序列放入对应桶中
  {
   int index=a[i]/10;//对应的桶号
   buckets[index].add(a[i]);
  }
  for(int i=0;i<buckets.length;i++)//每个桶内进行排序(使用系统自带快排)
  {
   buckets[i].sort(null);
   for(int j=0;j<buckets[i].size();j++)//顺便打印输出
   {
    System.out.print(buckets[i].get(j)+" ");
   }
  } 
 }
}

计数排序

计数排序是一种特殊的桶排序,每个桶的大小为1,每个桶不在用List表示,而通常用一个值用来计数。

「设计具体算法的时候」,先找到最小值min,再找最大值max。然后创建这个区间大小的数组,从min的位置开始计数,这样就可以最大程度的压缩空间,提高空间的使用效率。


public static void countSort(int a[])
{
  int min=Integer.MAX_VALUE;int max=Integer.MIN_VALUE;
  for(int i=0;i<a.length;i++)//找到max和min
  {
    if(a[i]<min) 
      min=a[i];
    if(a[i]>max)
      max=a[i];
  }
  int count[]=new int[max-min+1];//对元素进行计数
  for(int i=0;i<a.length;i++)
  {
    count[a[i]-min]++;
  }
  //排序取值
  int index=0;
  for(int i=0;i<count.length;i++)
  {
    while (count[i]-->0) {
      a[index++]=i+min;//有min才是真正值
    }
  }
}

基数排序

基数排序是一种很容易理解但是比较难实现(优化)的算法。基数排序也称为卡片排序,基数排序的原理就是多次利用计数排序(计数排序是一种特殊的桶排序),但是和前面的普通桶排序和计数排序有所区别的是,「基数排序并不是将一个整体分配到一个桶中」,而是将自身拆分成一个个组成的元素,每个元素分别顺序分配放入桶中、顺序收集,当从前往后或者从后往前每个位置都进行过这样顺序的分配、收集后,就获得了一个有序的数列。


如果是数字类型排序,那么这个桶只需要装0-9大小的数字,但是如果是字符类型,那么就需要注意ASCII的范围。

所以遇到这种情况我们基数排序思想很简单,就拿 934,241,3366,4399这几个数字进行基数排序的一趟过程来看,第一次会根据各位进行分配、收集:


分配和收集都是有序的,第二次会根据十位进行分配、收集,此次是在第一次个位分配、收集基础上进行的,所以所有数字单看个位十位是有序的。


而第三次就是对百位进行分配收集,此次完成之后百位及其以下是有序的。


而最后一次的时候进行处理的时候,千位有的数字需要补零,这次完毕后后千位及以后都有序,即整个序列排序完成。


简单实现代码为:

static void radixSort(int[] arr)//int 类型 从右往左
{
  List<Integer>bucket[]=new ArrayList[10];
  for(int i=0;i<10;i++)
  {
    bucket[i]=new ArrayList<Integer>();
  }
  //找到最大值
  int max=0;//假设都是正数
  for(int i=0;i<arr.length;i++)
  {
    if(arr[i]>max)
      max=arr[i];
  }
  int divideNum=1;//1 10 100 100……用来求对应位的数字
  while (max>0) {//max 和num 控制
    for(int num:arr)
    {
      bucket[(num/divideNum)%10].add(num);//分配 将对应位置的数字放到对应bucket中
    }
    divideNum*=10;
    max/=10;
    int idx=0;
    //收集 重新捡起数据
    for(List<Integer>list:bucket)
    {
      for(int num:list)
      {
        arr[idx++]=num;
      }
      list.clear();//收集完需要清空留下次继续使用
    }
  }
}

当然,基数排序还有字符串等长、不等长、一维数组优化等各种实现需要需学习,具体可以参考公众号内其他文章。

结语

本次十大排序就这么潇洒的过了一遍,我想大家都应该有所领悟了吧!对于算法总结,避免不必要的劳动力,我分享这个表格给大家:

排序算法平均时间复杂度最好最坏空间复杂度稳定性
冒泡排序O(n^2)O(n)O(n^2)O(1)稳定
快速排序O(nlogn)O(nlogn)O(n^2)O(logn)不稳定
插入排序O(n^2)O(n)O(n^2)O(1)稳定
希尔排序O(n^1.3)O(n)O(nlog2n)O(1)不稳定
选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
堆排序O(nlogn)O(nlogn)O(nlogn)O(1)不稳定
归并排序O(nlogn)O(nlogn)O(nlogn)O(n)稳定
桶排序O(n+k)O(n+k)O(n+k)O(n+k)稳定
计数排序O(n+k)O(n+k)O(n+k)O(k)稳定
基数排序O(n*k)O(n*k)O(n*k)O(n+k)稳定

原创不易,bigsai请你帮两件事帮忙一下:

  1. 点赞、在看、分享支持一下, 您的肯定是我创作的源源动力。

  2. 微信搜索「「bigsai」」,关注我的公众号,不仅免费送你电子书,我还会第一时间在公众号分享知识技术。加我还可拉你进力扣打卡群一起打卡LeetCode。

记得关注、咱们下次再见!



点点 在看 行不行


浏览 41
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报