英雄出少年,属于伪素数的卡迈克尔数的分布问题被一位高中生弄明白了!回想一下,你的高中在干什么,有没有值得骄傲的一件事。本文我们将要介绍的这位学生,名叫 Daniel Larsen,在高中的最后一年里,他证明了卡迈克尔数(Carmichael numbers)的关键定理。在他发表了自己的证明后,Larsen 被 MIT 录取,主修数学。一位数学家对这一研究给与极高的赞誉:任何数学家攻克这一证明都会为之自豪。更别说是一位高中生了。
早在 Daniel Larsen 上中学时,他就对填字游戏痴迷,还曾两次赢得地区比赛。他的母亲 Ayelet Lindenstrauss 曾这样形容他:Larsen 决定开始干一件事就非常专注,直到成功。迄今为止,Larsen 还保持着这样一项记录,他是在《纽约时报》上发表填字游戏最年轻的人,当年他才 13 岁。不过,他的母亲表示,Larsen 在过去的一年里开始思考关于数学的问题。这一转变源于一个更广泛的问题,曾被数学家 Carl Friedrich Gauss(高斯)评价为数学中最重要的问题之一:如何区分素数(只能被 1 和自身整除的数)和合数。数百年来,数学家们一直在寻找有效的方法来解决这个问题。一个多世纪以前,在寻求快速、强大的素性测试 (Primality test) 过程中,数学家偶然发现了一些麻烦——有些数不是素数,也会让测试误以为它们是素数。这些被称为卡迈克尔数的伪素数特别难以掌握。直到 1990 年代中期,数学家才证明它们的数量是无限的。这就引出另一个问题,要想进一步了解它们在数轴上的分布情况,则是一个更大的挑战。后来 Larsen 提出了一个新的证明,感兴趣的小伙伴可以阅读下面的论文。发现这项证明时,Larsen 只有 17 岁。
论文地址:https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnac203/6647493?redirectedFrom=fulltext&login=false打小就对数学感兴趣Larsen 在印第安纳州布卢明顿长大,一直被数学所吸引。他的父母都是数学家,在他和姐姐很小的时候,父母就向他们介绍了这门学科。(他的姐姐现在正在攻读数学博士学位。)当 Larsen 3 岁时,他就开始询问母亲关于无穷大本质的哲学问题。 几年前,他还沉浸在填字游戏,偶然的一次机会,他发现了一部关于张益唐的纪录片深受启发。张益唐于 2013 年 4 月在《数学年刊》上发表《素数间的有界间隔》,首次证明了存在无穷多对间隙为有限的素数,从而在孪生素数猜想这一数论难题上取得质的突破。半生潦倒,58 岁时凭此证明,成为公认的数论学家。其坎坷而传奇的数学旅程在学术圈内外引起反响。在此启发下,Larsen 对数论的思考根本停不下来,他对数论中著名的未解决问题孪生素数猜想开始产生兴趣。该问题可以这样描述:孪生素数就是指相差为 2 的素数对,例如 3 和 5,5 和 7,11 和 13…张益唐的研究证明了存在无穷多对相差小于 7000 万的素数,之后其他人也加入进来,随后的几个月内,数学家 James Maynard 和陶哲轩他们独立地证明了关于素数差距的研究。此后,这一差距缩小到 246 个。Larsen 想了解 Maynard 和陶哲轩研究背后的数学原理,不过 Larsen 发现他们的论文太复杂了,他试图阅读相关的作品,却发现这些也难以理解。Larsen 一直在坚持,直到 2021 年 2 月,他发现了一篇他认为既漂亮又易于理解的论文,主题是:卡迈克尔数,这些奇怪的合数有时会伪装成素数。卡迈克尔数17 世纪中叶,法国数学家皮埃尔 · 德 · 费马 (Pierre de Fermat) 给他的朋友兼知己 Frénicle de Bessy 写了一封信,他在信中陈述了后来被称为费马小定理(little theorem)的东西。即如果 N 是素数,那么无论 b 是什么,b^N- b 始终是 N 的倍数。例如,7 是素数,因此 2^7 – 2(等于 126)是 7 的倍数,类似地,3^7 – 3 是 7 的倍数,依此类推。数学家看到了完美检验给定数字是素数还是合数的潜力。他们知道如果 N 是素数,则 b^N – b 总是 N 的倍数。如果反过来会成立吗?也就是说,如果 b^N – b 是所有值 b 的 N 的倍数,那么 N 一定是素数吗?事实证明,在极少数情况下,N 可以满足这个条件并且仍然是合数。最小的数字是 561:对于任何整数 b,b^561 – b 始终是 561 的倍数,即使 561 不是素数。像这样的数字是以数学家 Robert Carmichael 的名字命名的。