(附代码)卷积网络压缩方法总结
共 9891字,需浏览 20分钟
·
2021-09-16 08:13
点击左上方蓝字关注我们
01
一般地,行阶梯型矩阵的秩等于其“台阶数”-非零行的行数。
1.1,总结
02
2.1,总结
03
3.1,总结
04
def residual_unit(data, num_filter, stride, dim_match, num_bits=1):
"""残差块 Residual Block 定义
"""
bnAct1 = bnn.BatchNorm(data=data, num_bits=num_bits)
conv1 = bnn.Convolution(data=bnAct1, num_filter=num_filter, kernel=(3, 3), stride=stride, pad=(1, 1))
convBn1 = bnn.BatchNorm(data=conv1, num_bits=num_bits)
conv2 = bnn.Convolution(data=convBn1, num_filter=num_filter, kernel=(3, 3), stride=(1, 1), pad=(1, 1))
if dim_match:
shortcut = data
else:
shortcut = bnn.Convolution(data=bnAct1, num_filter=num_filter, kernel=(3, 3), stride=stride, pad=(1, 1))
return conv2 + shortcut
4.1,二值网络的梯度下降
利用决定化方式(sign(x)函数)把 Weight 量化为 +1/-1, 以0为阈值 利用量化后的 Weight (只有+1/-1)来计算前向传播,由二值权重与输入进行卷积运算(实际上只涉及加法),获得卷积层输出。 反向传播 Backward Pass: 把梯度更新到浮点的 Weight 上(根据放松后的符号函数,计算相应梯度值,并根据该梯度的值对单精度的权重进行参数更新) 训练结束:把 Weight 永久性转化为 +1/-1, 以便 inference 使用
4.2,两个问题
直接根据权重的正负进行二值化: 。符号函数 sign(x) 定义如下:
进行随机的二值化,即对每一个权重,以一定概率取 。
4.3,二值连接算法改进
4.4,二值网络设计注意事项
不要使用 kernel = (1, 1) 的 Convolution (包括 resnet 的 bottleneck):二值网络中的 weight 都为 1bit, 如果再是 1x1 大小, 会极大地降低表达能力 增大 Channel 数目 + 增大 activation bit 数 要协同配合:如果一味增大 channel 数, 最终 feature map 因为 bit 数过低, 还是浪费了模型容量。同理反过来也是。 建议使用 4bit 及以下的 activation bit, 过高带来的精度收益变小, 而会显著提高 inference 计算量
05
本文只简单介绍这个领域的开篇之作-Distilling the Knowledge in a Neural Network,这是蒸 "logits"方法,后面还出现了蒸 "features" 的论文。想要更深入理解,中文博客可参考这篇文章-知识蒸馏是什么?一份入门随笔(https://zhuanlan.zhihu.com/p/90049906)。
知识蒸馏(knowledge distillation)(https://arxiv.org/abs/1503.02531),是迁移学习(transfer learning)的一种,简单来说就是训练一个大模型(teacher)和一个小模型(student),将庞大而复杂的大模型学习到的知识,通过一定技术手段迁移到精简的小模型上,从而使小模型能够获得与大模型相近的性能。
在知识蒸馏的实验中,我们先训练好一个 teacher 网络,然后将 teacher 的网络的输出结果 作为 student 网络的目标,训练 student 网络,使得 student 网络的结果 接近 ,因此,student 网络的损失函数为 。这里 CE 是交叉熵(Cross Entropy), 是真实标签的 onehot 编码, 是 teacher 网络的输出结果, 是 student 网络的输出结果。
但是,直接使用 teacher 网络的 softmax 的输出结果 q,可能不大合适。因此,一个网络训练好之后,对于正确的答案会有一个很高的置信度。例如,在 MNIST 数据中,对于某个 2 的输入,对于 2 的预测概率会很高,而对于 2 类似的数字,例如 3 和 7 的预测概率为 10−6 和 10−9。这样的话,teacher 网络学到数据的相似信息(例如数字 2 和 3,7 很类似)很难传达给 student 网络,因为它们的概率值接近0。因此,论文提出了 softmax-T(软标签计算公式)公式,如下所示:
这里 是 student 网络学习的对象(soft targets), 是 teacher 网络 softmax 前一层的输出 logit。如果将 取 1,上述公式变成 softmax,根据 logit 输出各个类别的概率。如果 接近于 0,则最大的值会越近 1,其它值会接近 0,近似于 onehot 编码。
所以,可以知道 student 模型最终的损失函数由两部分组成:
第一项是由小模型(student 模型)的预测结果与大模型的“软标签”所构成的交叉熵(cross entroy);
第二项为小模型预测结果与普通类别标签的交叉熵。
这两个损失函数的重要程度可通过一定的权重进行调节,在实际应用中, T 的取值会影响最终的结果,一般而言,较大的 T 能够获得较高的准确度,T(蒸馏温度参数) 属于知识蒸馏模型训练超参数的一种。T 是一个可调节的超参数、T 值越大、概率分布越软(论文中的描述),曲线便越平滑,相当于在迁移学习的过程中添加了扰动,从而使得学生网络在借鉴学习的时候更有效、泛化能力更强,这其实就是一种抑制过拟合的策略。知识蒸馏的整个过程如下图:
student 模型的实际模型结构和小模型一样,但是损失函数包含了两部分,分类网络的知识蒸馏 mxnet 代码示例如下:
# -*-coding-*- : utf-8
"""
本程序没有给出具体的模型结构代码,主要给出了知识蒸馏 softmax 损失计算部分。
"""
import mxnet as mx
def get_symbol(data, class_labels, resnet_layer_num,Temperature,mimic_weight,num_classes=2):
backbone = StudentBackbone(data) # Backbone 为分类网络 backbone 类
flatten = mx.symbol.Flatten(data=conv1, name="flatten")
fc_class_score_s = mx.symbol.FullyConnected(data=flatten, num_hidden=num_classes, name='fc_class_score')
softmax1 = mx.symbol.SoftmaxOutput(data=fc_class_score_s, label=class_labels, name='softmax_hard')
import symbol_resnet # Teacher model
fc_class_score_t = symbol_resnet.get_symbol(net_depth=resnet_layer_num, num_class=num_classes, data=data)
s_input_for_softmax=fc_class_score_s/Temperature
t_input_for_softmax=fc_class_score_t/Temperature
t_soft_labels=mx.symbol.softmax(t_input_for_softmax, name='teacher_soft_labels')
softmax2 = mx.symbol.SoftmaxOutput(data=s_input_for_softmax, label=t_soft_labels, name='softmax_soft',grad_scale=mimic_weight)
group=mx.symbol.Group([softmax1,softmax2])
group.save('group2-symbol.json')
return group
tensorflow代码示例如下:
# 将类别标签进行one-hot编码
one_hot = tf.one_hot(y, n_classes,1.0,0.0) # n_classes为类别总数, n为类别标签
# one_hot = tf.cast(one_hot_int, tf.float32)
teacher_tau = tf.scalar_mul(1.0/args.tau, teacher) # teacher为teacher模型直接输出张量, tau为温度系数T
student_tau = tf.scalar_mul(1.0/args.tau, student) # 将模型直接输出logits张量student处于温度系数T
objective1 = tf.nn.sigmoid_cross_entropy_with_logits(student_tau, one_hot)
objective2 = tf.scalar_mul(0.5, tf.square(student_tau-teacher_tau))
"""
student模型最终的损失函数由两部分组成:
第一项是由小模型的预测结果与大模型的“软标签”所构成的交叉熵(cross entroy);
第二项为预测结果与普通类别标签的交叉熵。
"""
tf_loss = (args.lamda*tf.reduce_sum(objective1) + (1-args.lamda)*tf.reduce_sum(objective2))/batch_size
tf.scalar_mul 函数为对 tf 张量进行固定倍率 scalar 缩放函数。一般 T 的取值在 1 - 20 之间,这里我参考了开源代码,取值为 3。我发现在开源代码中 student 模型的训练,有些是和 teacher 模型一起训练的,有些是 teacher 模型训练好后直接指导 student 模型训练。
06
参考资料
1. https://www.cnblogs.com/dyl222/p/11079489.html
2.https://github.com/chengshengchan/model_compression/blob/master/teacher-student.py
3. https://github.com/dkozlov/awesome-knowledge-distillation
4. https://arxiv.org/abs/1603.05279
5. 解析卷积神经网络-深度学习实践手册
6. https://zhuanlan.zhihu.com/p/81467832
END
整理不易,点赞支持一下吧↓