干货 | 目标检测技巧大汇总(含代码与解读)
共 32188字,需浏览 65分钟
·
2021-05-16 07:04
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转自:视学算法
源码在mmdet/datasets/extra_aug.py里面,包括RandomCrop、brightness、contrast、saturation、ExtraAugmentation等等图像增强方法。
添加位置是train_pipeline或test_pipeline这个地方(一般train进行增强而test不需要),例如数据增强RandomFlip,flip_ratio代表随机翻转的概率:
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
源码在mmdet/datasets/custom.py里面,增强源码为:
def pre_pipeline(self, results): results['img_prefix'] = self.img_prefix results['seg_prefix'] = self.seg_prefix results['proposal_file'] = self.proposal_file results['bbox_fields'] = [] results['mask_fields'] = []
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), #这里可以更换多尺度[(),()]
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
box voting 的阈值,
不同的输入中这个框至少出现了几次来允许它输出,
得分的阈值,一个目标框的得分低于这个阈值的时候,就删掉这个目标框。
第一个模型保存模型权值的平均值(WSWA)。在训练结束后,它将是用于预测的最终模型。
第二个模型(W)将穿过权值空间,基于周期性学习率规划探索权重空间。
rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.4, # 更换 neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', # 解决难易样本,也解决了正负样本比例问题。num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False) ], stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=20)) # 这里可以换为sof_tnms
更好的先验(YOLOv2):使用聚类方法统计数据中box标注的大小和长宽比,以更好的设置anchor box的生成配置
更好的pre-train模型:检测模型的基础网络通常使用ImageNet(通常是ImageNet-1k)上训练好的模型进行初始化,使用更大的数据集(ImageNet-5k)预训练基础网络对精度的提升亦有帮助
超参数的调整:部分工作也发现如NMS中IoU阈值的调整(从0.3到0.5)也有利于精度的提升,但这一方面尚无最佳配置参照
1.各部分代码解析
1.1 faster_rcnn_r50_fpn_1x.py:
# model settings
model = dict(
type='FasterRCNN', # model类型
pretrained='modelzoo://resnet50', # 预训练模型:imagenet-resnet50
backbone=dict(
type='ResNet', # backbone类型
depth=50, # 网络层数
num_stages=4, # resnet的stage数量
out_indices=(0, 1, 2, 3), # 输出的stage的序号
frozen_stages=1, # 冻结的stage数量,即该stage不更新参数,-1表示所有的stage都更新参数
style='pytorch'), # 网络风格:如果设置pytorch,则stride为2的层是conv3x3的卷积层;如果设置caffe,则stride为2的层是第一个conv1x1的卷积层
neck=dict(
type='FPN', # neck类型
in_channels=[256, 512, 1024, 2048], # 输入的各个stage的通道数
out_channels=256, # 输出的特征层的通道数
num_outs=5), # 输出的特征层的数量
rpn_head=dict(
type='RPNHead', # RPN网络类型
in_channels=256, # RPN网络的输入通道数
feat_channels=256, # 特征层的通道数
anchor_scales=[8], # 生成的anchor的baselen,baselen = sqrt(w*h),w和h为anchor的宽和高
anchor_ratios=[0.5, 1.0, 2.0], # anchor的宽高比
anchor_strides=[4, 8, 16, 32, 64], # 在每个特征层上的anchor的步长(对应于原图)
target_means=[.0, .0, .0, .0], # 均值
target_stds=[1.0, 1.0, 1.0, 1.0], # 方差
use_sigmoid_cls=True), # 是否使用sigmoid来进行分类,如果False则使用softmax来分类
bbox_roi_extractor=dict(
type='SingleRoIExtractor', # RoIExtractor类型
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), # ROI具体参数:ROI类型为ROIalign,输出尺寸为7,sample数为2
out_channels=256, # 输出通道数
featmap_strides=[4, 8, 16, 32]), # 特征图的步长
bbox_head=dict(
type='SharedFCBBoxHead', # 全连接层类型
num_fcs=2, # 全连接层数量
in_channels=256, # 输入通道数
fc_out_channels=1024, # 输出通道数
roi_feat_size=7, # ROI特征层尺寸
num_classes=81, # 分类器的类别数量+1,+1是因为多了一个背景的类别
target_means=[0., 0., 0., 0.], # 均值
target_stds=[0.1, 0.1, 0.2, 0.2], # 方差
reg_class_agnostic=False)) # 是否采用class_agnostic的方式来预测,class_agnostic表示输出bbox时只考虑其是否为前景,后续分类的时候再根据该bbox在网络中的类别得分来分类,也就是说一个框可以对应多个类别
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner', # RPN网络的正负样本划分
pos_iou_thr=0.7, # 正样本的iou阈值
neg_iou_thr=0.3, # 负样本的iou阈值
min_pos_iou=0.3, # 正样本的iou最小值。如果assign给ground truth的anchors中最大的IOU低于0.3,则忽略所有的anchors,否则保留最大IOU的anchor
ignore_iof_thr=-1), # 忽略bbox的阈值,当ground truth中包含需要忽略的bbox时使用,-1表示不忽略
sampler=dict(
type='RandomSampler', # 正负样本提取器类型
num=256, # 需提取的正负样本数量
pos_fraction=0.5, # 正样本比例
neg_pos_ub=-1, # 最大负样本比例,大于该比例的负样本忽略,-1表示不忽略
add_gt_as_proposals=False), # 把ground truth加入proposal作为正样本
allowed_border=0, # 允许在bbox周围外扩一定的像素
pos_weight=-1, # 正样本权重,-1表示不改变原始的权重
smoothl1_beta=1 / 9.0, # 平滑L1系数
debug=False), # debug模式
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner', # RCNN网络正负样本划分
pos_iou_thr=0.5, # 正样本的iou阈值
neg_iou_thr=0.5, # 负样本的iou阈值
min_pos_iou=0.5, # 正样本的iou最小值。如果assign给ground truth的anchors中最大的IOU低于0.3,则忽略所有的anchors,否则保留最大IOU的anchor
ignore_iof_thr=-1), # 忽略bbox的阈值,当ground truth中包含需要忽略的bbox时使用,-1表示不忽略
sampler=dict(
type='RandomSampler', # 正负样本提取器类型
num=512, # 需提取的正负样本数量
pos_fraction=0.25, # 正样本比例
neg_pos_ub=-1, # 最大负样本比例,大于该比例的负样本忽略,-1表示不忽略
add_gt_as_proposals=True), # 把ground truth加入proposal作为正样本
pos_weight=-1, # 正样本权重,-1表示不改变原始的权重
debug=False)) # debug模式
test_cfg = dict(
rpn=dict( # 推断时的RPN参数
nms_across_levels=False, # 在所有的fpn层内做nms
nms_pre=2000, # 在nms之前保留的的得分最高的proposal数量
nms_post=2000, # 在nms之后保留的的得分最高的proposal数量
max_num=2000, # 在后处理完成之后保留的proposal数量
nms_thr=0.7, # nms阈值
min_bbox_size=0), # 最小bbox尺寸
rcnn=dict(
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # max_per_img表示最终输出的det bbox数量
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) # soft_nms参数
)
# dataset settings
dataset_type = 'CocoDataset' # 数据集类型
data_root = 'data/coco/' # 数据集根目录
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # 输入图像初始化,减去均值mean并处以方差std,to_rgb表示将bgr转为rgb
data = dict(
imgs_per_gpu=2, # 每个gpu计算的图像数量
workers_per_gpu=2, # 每个gpu分配的线程数
train=dict(
type=dataset_type, # 数据集类型
ann_file=data_root + 'annotations/instances_train2017.json', # 数据集annotation路径
img_prefix=data_root + 'train2017/', # 数据集的图片路径
img_scale=(1333, 800), # 输入图像尺寸,最大边1333,最小边800
img_norm_cfg=img_norm_cfg, # 图像初始化参数
size_divisor=32, # 对图像进行resize时的最小单位,32表示所有的图像都会被resize成32的倍数
flip_ratio=0.5, # 图像的随机左右翻转的概率
with_mask=False, # 训练时附带mask
with_crowd=True, # 训练时附带difficult的样本
with_label=True), # 训练时附带label
val=dict(
type=dataset_type, # 同上
ann_file=data_root + 'annotations/instances_val2017.json', # 同上
img_prefix=data_root + 'val2017/', # 同上
img_scale=(1333, 800), # 同上
img_norm_cfg=img_norm_cfg, # 同上
size_divisor=32, # 同上
flip_ratio=0, # 同上
with_mask=False, # 同上
with_crowd=True, # 同上
with_label=True), # 同上
test=dict(
type=dataset_type, # 同上
ann_file=data_root + 'annotations/instances_val2017.json', # 同上
img_prefix=data_root + 'val2017/', # 同上
img_scale=(1333, 800), # 同上
img_norm_cfg=img_norm_cfg, # 同上
size_divisor=32, # 同上
flip_ratio=0, # 同上
with_mask=False, # 同上
with_label=False, # 同上
test_mode=True)) # 同上
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) # 优化参数,lr为学习率,momentum为动量因子,weight_decay为权重衰减因子
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # 梯度均衡参数
# learning policy
lr_config = dict(
policy='step', # 优化策略
warmup='linear', # 初始的学习率增加的策略,linear为线性增加
warmup_iters=500, # 在初始的500次迭代中学习率逐渐增加
warmup_ratio=1.0 / 3, # 起始的学习率
step=[8, 11]) # 在第8和11个epoch时降低学习率
checkpoint_config = dict(interval=1) # 每1个epoch存储一次模型
# yapf:disable
log_config = dict(
interval=50, # 每50个batch输出一次信息
hooks=[
dict(type='TextLoggerHook'), # 控制台输出信息的风格
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12 # 最大epoch数
dist_params = dict(backend='nccl') # 分布式参数
log_level = 'INFO' # 输出信息的完整度级别
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x' # log文件和模型文件存储路径
load_from = None # 加载模型的路径,None表示从预训练模型加载
resume_from = None # 恢复训练模型的路径
workflow = [('train', 1)] # 当前工作区名称
1.2 cascade_rcnn_r50_fpn_1x.py
# model settings
model = dict(
type='CascadeRCNN',
num_stages=3, # RCNN网络的stage数量,在faster-RCNN中为1
pretrained='modelzoo://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True)
])
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rcnn=[ # 注意,这里有3个RCNN的模块,对应开头的那个RCNN的stage数量
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
],
stage_loss_weights=[1, 0.5, 0.25]) # 3个RCNN的stage的loss权重
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
keep_all_stages=False) # 是否保留所有stage的结果
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=False,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/cascade_rcnn_r50_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
2.trick部分代码,cascade_rcnn_r50_fpn_1x.py:
# fp16 settingsfp16 = dict(loss_scale=512.)# model settingsmodel = dict( type='CascadeRCNN', num_stages=3, pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch', #dcn=dict( #在最后三个block加入可变形卷积 # modulated=False, deformable_groups=1, fallback_on_stride=False), # stage_with_dcn=(False, True, True, True) ), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.2, 0.5, 1.0, 2.0, 5.0], # 添加了0.2,5,过两天发图 anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='FocalLoss', use_sigmoid=True, loss_weight=1.0), # 修改了loss,为了调控难易样本与正负样本比例 loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=11, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=11, target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=11, target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ])# model training and testing settingstrain_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.4, # 更换 neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', # 解决难易样本,也解决了正负样本比例问题。num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False) ], stage_loss_weights=[1, 0.5, 0.25])test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=20)) # 这里可以换为sof_tnms# dataset settingsdataset_type = 'CocoDataset'data_root = '../../data/chongqing1_round1_train1_20191223/'img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(492,658), keep_ratio=True), #这里可以更换多尺度[(),()] dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),]test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(492,658), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ])]data = dict( imgs_per_gpu=8, # 有的同学不知道batchsize在哪修改,其实就是修改这里,每个gpu同时处理的images数目。workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'fixed_annotations.json', # 更换自己的json文件 img_prefix=data_root + 'images/', # images目录 pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'fixed_annotations.json', img_prefix=data_root + 'images/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'fixed_annotations.json', img_prefix=data_root + 'images/', pipeline=test_pipeline))# optimizeroptimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001) # lr = 0.00125*batch_size,不能过大,否则梯度爆炸。optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))# learning policylr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[6, 12, 19])checkpoint_config = dict(interval=1)# yapf:disablelog_config = dict( interval=64, hooks=[ dict(type='TextLoggerHook'), # 控制台输出信息的风格 # dict(type='TensorboardLoggerHook') # 需要安装tensorflow and tensorboard才可以使用 ])# yapf:enable# runtime settingstotal_epochs = 20dist_params = dict(backend='nccl')log_level = 'INFO'work_dir = '../work_dirs/cascade_rcnn_r50_fpn_1x' # 日志目录load_from = '../work_dirs/cascade_rcnn_r50_fpn_1x/latest.pth' # 模型加载目录文件#load_from = '../work_dirs/cascade_rcnn_r50_fpn_1x/cascade_rcnn_r50_coco_pretrained_weights_classes_11.pth'resume_from = Noneworkflow = [('train', 1)]
下载1:OpenCV-Contrib扩展模块中文版教程 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。 下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。 下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。 交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~