ERNIE基于持续学习的语义理解预训练框架

联合创作 · 2023-09-26 03:43

ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在情感分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答等16个公开数据集上全面显著超越世界领先技术,在国际权威的通用语言理解评估基准GLUE上,得分首次突破90分,获得全球第一。在今年3月落下帷幕的全球最大语义评测SemEval 2020上,ERNIE摘得5项世界冠军, 该技术也被全球顶级科技商业杂志《麻省理工科技评论》官方网站报道,相关创新成果也被国际顶级学术会议AAAI、IJCAI收录。ERNIE在工业界得到了大规模应用,如搜索引擎、新闻推荐、广告系统、语音交互、智能客服等。

提醒: ERNIE老版本代码已经迁移至repro分支,欢迎使用我们全新升级的基于动静结合的新版ERNIE套件进行开发。另外,也欢迎上EasyDL体验更丰富的功能(如ERNIE 2.0、ERNIE 2.1、ERNIE领域模型等)。

下载安装命令

## CPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/cpu paddlepaddle

## GPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/gpu paddlepaddle-gpu

在 ERNIE 2.0 中,新构建的预训练任务类型可以无缝的加入训练框架,持续的进行语义理解学习。通过新增的实体预测、句子因果关系判断、文章句子结构重建等语义任务,ERNIE 2.0 语义理解预训练模型从训练数据中获取了词法、句法、语义等多个维度的自然语言信息,极大地增强了通用语义表示能力。

./.metas/ERNIE_milestone.png

浏览 8
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报