如何看待神经网络的黑箱?

小白学视觉

共 1951字,需浏览 4分钟

 ·

2024-05-02 10:05

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达


编者荐语

 

神经网络黑箱的意思是我们知其然,不知其所以然,相关理论比较缺乏。别看神经网络相关论文汗牛充栋,但是大部分类似于technical report,告诉你我这么做效果不错,具体原因不知道,只能“guess”,所以很容易被打脸。

链接丨https://www.zhihu.com/question/263672028/answer/430179912


如何看待神经网络的黑箱?这一篇文章(www.argmin.net/2018/01/25/optics/)讲得挺好的,他用光学系统类比深度学习,非常形象。

「从结构来看」,无论是深度学习还是镜头,都是一层一层叠起来的,如下图所示。

「从设计流程来看」,当要设计一个镜头的时候,往往以一个已知的镜头组合作为基础,这个已知的镜头组合一般都以发明这个镜头组合的人命名,类似于深度学习的里面的LeNet、AlexNet。然后你跑个仿真,看看这个基础镜头组合的表现和你需要达到的要求存在哪些差距,在合适的地方插入合适的组件来磨平差距。接着,你用一个[数值优化器]来调上述镜头组合的参数,以发挥上述镜头组合最大的功效。这个类似于深度学习里面的优化和调超参过程。

「从系统组成部件来看」,光学组件有的起到反射作用,有的起到衍射作用,有的起到[折射作用],有的起到散射作用,有的起到相位校正作用等等。深度学习组件(conv、pool、relu等等)有的起到学习空间相关作用,有的起到防止过拟合作用,有的起到增加非线性作用等等。

「从发展历史来看」,伽利略时代虽然没有光学理论,类似于现在的深度学习,但是同样造出来了人类历史上第一架天文望远镜,推动了天文学的发展。现在深度学习也理论不足,但是极大地推动了人工智能的发展。「从结果看」,在几百年里,经过科学家的不懈努力,光学终于形成了一整套比较完备的体系,使得现在的光学工程师在设计镜头的时候有迹可循,而不是像几百年前的伽利略一样靠经验设计。

这一套完备的体系将光学分层了,如下图所示,这样的分层使得光学分工明确,每个人研究各自层的东西,一起推动光学发展。上面的层是下面层的抽象,越往上能解释越复杂的现象,见下图所示,而相比而言深度学习里面的很多现象还得不到较好的解释。

光学也经历过黑箱时代,深度学习现在就是黑箱时代,理论的前进一般会晚于实践,但是假以时日,理论肯定会完备起来,形成类似于当前光学那样的层层抽象的学术体系,只不过这个过程需要所有从业者一起的努力,和一定时间的积淀,也许几十年,也许上百年。


作者:mileistone  编辑:算法进阶(侵删

   
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 21
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报