数据维度爆炸怎么办?详解5大常用的特征选择方法
共 16762字,需浏览 34分钟
·
2020-07-28 12:28
每日干货 & 每月组队学习,不错过
作者:Edwin Jarvis,cnblog博客整理
在许多机器学习相关的书里,很难找到关于特征选择的内容,因为特征选择要解决的问题往往被视为机器学习的一个子模块,一般不会单独拿出来讨论。
减少特征数量、降维,使模型泛化能力更强,减少过拟合
增强对特征和特征值之间的理解
好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。
本文将结合Scikit-learn提供的例子介绍几种常用的特征选择方法,它们各自的优缺点和问题。本文目录如下:
一、去掉取值变化小的特征
英文:Removing features with low variance
二、单变量特征选择
英文:Univariate feature selection。
单变量特征选择能够对每一个特征进行测试,衡量该特征和响应变量之间的关系,根据得分扔掉不好的特征。对于回归和分类问题可以采用卡方检验等方式对特征进行测试。
这种方法比较简单,易于运行,易于理解,通常对于理解数据有较好的效果(但对特征优化、提高泛化能力来说不一定有效);这种方法有许多改进的版本、变种。
2.1 Pearson相关系数
英文:Pearson Correlation
Pearson Correlation速度快、易于计算,经常在拿到数据(经过清洗和特征提取之后的)之后第一时间就执行。Scipy的pearsonr方法能够同时计算相关系数和p-value,
import numpy as np
from scipy.stats import pearsonr
np.random.seed(0)
size = 300
x = np.random.normal(0, 1, size)
print "Lower noise", pearsonr(x, x + np.random.normal(0, 1, size))
print "Higher noise", pearsonr(x, x + np.random.normal(0, 10, size))
这个例子中,我们比较了变量在加入噪音之前和之后的差异。当噪音比较小的时候,相关性很强,p-value很低。
Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。如果关系是非线性的,即便两个变量具有一一对应的关系,Pearson相关性也可能会接近0。
x = np.random.uniform(-1, 1, 100000)
print pearsonr(x, x**2)[0]
-0.00230804707612
更多类似的例子参考sample plots。另外,如果仅仅根据相关系数这个值来判断的话,有时候会具有很强的误导性,如Anscombe’s quartet,最好把数据可视化出来,以免得出错误的结论。
2.2 互信息和最大信息系数
英文:Mutual information and maximal information coefficient (MIC)
以上就是经典的互信息公式了。想把互信息直接用于特征选择其实不是太方便:1、它不属于度量方式,也没有办法归一化,在不同数据及上的结果无法做比较;2、对于连续变量的计算不是很方便(X和Y都是集合,x,y都是离散的取值),通常变量需要先离散化,而互信息的结果对离散化的方式很敏感。
最大信息系数克服了这两个问题。它首先寻找一种最优的离散化方式,然后把互信息取值转换成一种度量方式,取值区间在[0,1]。minepy提供了MIC功能。
反过头来看y=x^2这个例子,MIC算出来的互信息值为1(最大的取值)。
from minepy import MINE
m = MINE()
x = np.random.uniform(-1, 1, 10000)
m.compute_score(x, x**2)
print m.mic()
1.0
2.3 距离相关系数
英文:Distance correlation
R的energy包里提供了距离相关系数的实现,另外这是Python gist的实现。
#R-code
> x = runif (1000, -1, 1)
> dcor(x, x**2)
[1] 0.4943864
尽管有MIC和距离相关系数在了,但当变量之间的关系接近线性相关的时候,Pearson相关系数仍然是不可替代的。第一、Pearson相关系数计算速度快,这在处理大规模数据的时候很重要。第二、Pearson相关系数的取值区间是[-1,1],而MIC和距离相关系数都是[0,1]。这个特点使得Pearson相关系数能够表征更丰富的关系,符号表示关系的正负,绝对值能够表示强度。当然,Pearson相关性有效的前提是两个变量的变化关系是单调的。
2.4 基于学习模型的特征排序
英文:Model based ranking
在波士顿房价数据集上使用sklearn的随机森林回归给出一个单变量选择的例子:
from sklearn.cross_validation import cross_val_score, ShuffleSplit
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
#Load boston housing dataset as an example
boston = load_boston()
X = boston["data"]
Y = boston["target"]
names = boston["feature_names"]
rf = RandomForestRegressor(n_estimators=20, max_depth=4)
scores = []
for i in range(X.shape[1]):
score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2",
cv=ShuffleSplit(len(X), 3, .3))
scores.append((round(np.mean(score), 3), names[i]))
print sorted(scores, reverse=True)
三、线性模型和正则化
单变量特征选择方法独立的衡量每个特征与响应变量之间的关系,另一种主流的特征选择方法是基于机器学习模型的方法。有些机器学习方法本身就具有对特征进行打分的机制,或者很容易将其运用到特征选择任务中,例如回归模型,SVM,决策树,随机森林等等。说句题外话,这种方法好像在一些地方叫做wrapper类型,大概意思是说,特征排序模型和机器学习模型是耦盒在一起的,对应的非wrapper类型的特征选择方法叫做filter类型。
下面将介绍如何用回归模型的系数来选择特征。越是重要的特征在模型中对应的系数就会越大,而跟输出变量越是无关的特征对应的系数就会越接近于0。在噪音不多的数据上,或者是数据量远远大于特征数的数据上,如果特征之间相对来说是比较独立的,那么即便是运用最简单的线性回归模型也一样能取得非常好的效果。
from sklearn.linear_model import LinearRegression
import numpy as np
np.random.seed(0)
size = 5000
#A dataset with 3 features
X = np.random.normal(0, 1, (size, 3))
#Y = X0 + 2*X1 + noise
Y = X[:,0] + 2*X[:,1] + np.random.normal(0, 2, size)
lr = LinearRegression()
lr.fit(X, Y)
#A helper method for pretty-printing linear models
def pretty_print_linear(coefs, names = None, sort = False):
if names == None:
names = ["X%s" % x for x in range(len(coefs))]
lst = zip(coefs, names)
if sort:
lst = sorted(lst, key = lambda x:-np.abs(x[0]))
return " + ".join("%s * %s" % (round(coef, 3), name)
for coef, name in lst)
print "Linear model:", pretty_print_linear(lr.coef_
下边这个例子当中,在同一个数据上加入了一些噪音,用随机森林算法进行特征选择。
from sklearn.linear_model import LinearRegression
size = 100
np.random.seed(seed=5)
X_seed = np.random.normal(0, 1, size)
X1 = X_seed + np.random.normal(0, .1, size)
X2 = X_seed + np.random.normal(0, .1, size)
X3 = X_seed + np.random.normal(0, .1, size)
Y = X1 + X2 + X3 + np.random.normal(0,1, size)
X = np.array([X1, X2, X3]).T
lr = LinearRegression()
lr.fit(X,Y)
print "Linear model:", pretty_print_linear(lr.coef_)
同样的方法和套路可以用到类似的线性模型上,比如逻辑回归。
3.1 正则化模型
正则化就是把额外的约束或者惩罚项加到已有模型(损失函数)上,以防止过拟合并提高泛化能力。损失函数由原来的E(X,Y)变为E(X,Y)+alpha||w||,w是模型系数组成的向量(有些地方也叫参数parameter,coefficients),||·||一般是L1或者L2范数,alpha是一个可调的参数,控制着正则化的强度。当用在线性模型上时,L1正则化和L2正则化也称为Lasso和Ridge。
3.2 L1正则化/Lasso
下面的例子在波士顿房价数据上运行了Lasso,其中参数alpha是通过grid search进行优化的。
from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
boston = load_boston()
scaler = StandardScaler()
X = scaler.fit_transform(boston["data"])
Y = boston["target"]
names = boston["feature_names"]
lasso = Lasso(alpha=.3)
lasso.fit(X, Y)
print "Lasso model: ", pretty_print_linear(lasso.coef_, names, sort = True)
然而,L1正则化像非正则化线性模型一样也是不稳定的,如果特征集合中具有相关联的特征,当数据发生细微变化时也有可能导致很大的模型差异。
3.3 L2正则化/Ridge regression
回过头来看看3个互相关联的特征的例子,分别以10个不同的种子随机初始化运行10次,来观察L1和L2正则化的稳
from sklearn.linear_model import Ridge
from sklearn.metrics import r2_score
size = 100
#We run the method 10 times with different random seeds
for i in range(10):
print "Random seed %s" % i
np.random.seed(seed=i)
X_seed = np.random.normal(0, 1, size)
X1 = X_seed + np.random.normal(0, .1, size)
X2 = X_seed + np.random.normal(0, .1, size)
X3 = X_seed + np.random.normal(0, .1, size)
Y = X1 + X2 + X3 + np.random.normal(0, 1, size)
X = np.array([X1, X2, X3]).T
lr = LinearRegression()
lr.fit(X,Y)
print "Linear model:", pretty_print_linear(lr.coef_)
ridge = Ridge(alpha=10)
ridge.fit(X,Y)
print "Ridge model:", pretty_print_linear(ridge.coef_)
可以看出,不同的数据上线性回归得到的模型(系数)相差甚远,但对于L2正则化模型来说,结果中的系数非常的稳定,差别较小,都比较接近于1,能够反映出数据的内在结构。
随机森林具有准确率高、鲁棒性好、易于使用等优点,这使得它成为了目前最流行的机器学习算法之一。随机森林提供了两种特征选择的方法:mean decrease impurity和mean decrease accuracy。
4.1 平均不纯度减少
英文:mean decrease impurity
下边的例子是sklearn中基于随机森林的特征重要度度量方法:
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
import numpy as np
#Load boston housing dataset as an example
boston = load_boston()
X = boston["data"]
Y = boston["target"]
names = boston["feature_names"]
rf = RandomForestRegressor()
rf.fit(X, Y)
print "Features sorted by their score:"
print sorted(zip(map(lambda x: round(x, 4), rf.feature_importances_), names),
reverse=True)
特征随机选择方法稍微缓解了这个问题,但总的来说并没有完全解决。下面的例子中,X0、X1、X2是三个互相关联的变量,在没有噪音的情况下,输出变量是三者之和。
size = 10000
np.random.seed(seed=10)
X_seed = np.random.normal(0, 1, size)
X0 = X_seed + np.random.normal(0, .1, size)
X1 = X_seed + np.random.normal(0, .1, size)
X2 = X_seed + np.random.normal(0, .1, size)
X = np.array([X0, X1, X2]).T
Y = X0 + X1 + X2
rf = RandomForestRegressor(n_estimators=20, max_features=2)
rf.fit(X, Y);
print "Scores for X0, X1, X2:", map(lambda x:round (x,3),
rf.feature_importances_)
需要注意的一点是,关联特征的打分存在不稳定的现象,这不仅仅是随机森林特有的,大多数基于模型的特征选择方法都存在这个问题。
4.2 平均精确率减少
英文:Mean decrease accuracy
这个方法sklearn中没有直接提供,但是很容易实现,下面继续在波士顿房价数据集上进行实现。
from sklearn.cross_validation import ShuffleSplit
from sklearn.metrics import r2_score
from collections import defaultdict
X = boston["data"]
Y = boston["target"]
rf = RandomForestRegressor()
scores = defaultdict(list)
#crossvalidate the scores on a number of different random splits of the data
for train_idx, test_idx in ShuffleSplit(len(X), 100, .3):
X_train, X_test = X[train_idx], X[test_idx]
Y_train, Y_test = Y[train_idx], Y[test_idx]
r = rf.fit(X_train, Y_train)
acc = r2_score(Y_test, rf.predict(X_test))
for i in range(X.shape[1]):
X_t = X_test.copy()
np.random.shuffle(X_t[:, i])
shuff_acc = r2_score(Y_test, rf.predict(X_t))
scores[names[i]].append((acc-shuff_acc)/acc)
print "Features sorted by their score:"
print sorted([(round(np.mean(score), 4), feat) for
feat, score in scores.items()], reverse=True)
在这个例子当中,LSTAT和RM这两个特征对模型的性能有着很大的影响,打乱这两个特征的特征值使得模型的性能下降了73%和57%。注意,尽管这些我们是在所有特征上进行了训练得到了模型,然后才得到了每个特征的重要性测试,这并不意味着我们扔掉某个或者某些重要特征后模型的性能就一定会下降很多,因为即便某个特征删掉之后,其关联特征一样可以发挥作用,让模型性能基本上不变。
五、两种顶层特征选择算法
之所以叫做顶层,是因为他们都是建立在基于模型的特征选择方法基础之上的,例如回归和SVM,在不同的子集上建立模型,然后汇总最终确定特征得分。
5.1 稳定性选择
sklearn在随机lasso和随机逻辑回归中有对稳定性选择的实现。
from sklearn.linear_model import RandomizedLasso
from sklearn.datasets import load_boston
boston = load_boston()
#using the Boston housing data.
#Data gets scaled automatically by sklearn's implementation
X = boston["data"]
Y = boston["target"]
names = boston["feature_names"]
rlasso = RandomizedLasso(alpha=0.025)
rlasso.fit(X, Y)
print "Features sorted by their score:"
print sorted(zip(map(lambda x: round(x, 4), rlasso.scores_),
names), reverse=True)
在上边这个例子当中,最高的3个特征得分是1.0,这表示他们总会被选作有用的特征(当然,得分会收到正则化参数alpha的影响,但是sklearn的随机lasso能够自动选择最优的alpha)。接下来的几个特征得分就开始下降,但是下降的不是特别急剧,这跟纯lasso的方法和随机森林的结果不一样。能够看出稳定性选择对于克服过拟合和对数据理解来说都是有帮助的:总的来说,好的特征不会因为有相似的特征、关联特征而得分为0,这跟Lasso是不同的。对于特征选择任务,在许多数据集和环境下,稳定性选择往往是性能最好的方法之一。
5.2 递归特征消除
Sklearn提供了RFE包,可以用于特征消除,还提供了RFECV,可以通过交叉验证来对的特征进行排序。
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
boston = load_boston()
X = boston["data"]
Y = boston["target"]
names = boston["feature_names"]
#use linear regression as the model
lr = LinearRegression()
#rank all features, i.e continue the elimination until the last one
rfe = RFE(lr, n_features_to_select=1)
rfe.fit(X,Y)
print "Features sorted by their rank:"
print sorted(zip(map(lambda x: round(x, 4), rfe.ranking_), names))
六、一个完整的例子
X1到X5是由单变量分布生成的,e是标准正态变量N(0,1)。另外,原始的数据集中含有5个噪音变量 X5,…,X10,跟响应变量是独立的。我们增加了4个额外的变量X11,…X14,分别是X1,…,X4的关联变量,通过f(x)=x+N(0,0.01)生成,这将产生大于0.999的关联系数。这样生成的数据能够体现出不同的特征排序方法应对关联特征时的表现。
接下来将会在上述数据上运行所有的特征选择方法,并且将每种方法给出的得分进行归一化,让取值都落在0-1之间。对于RFE来说,由于它给出的是顺序而不是得分,我们将最好的5个的得分定为1,其他的特征的得分均匀的分布在0-1之间。
from sklearn.datasets import load_boston
from sklearn.linear_model import (LinearRegression, Ridge,
Lasso, RandomizedLasso)
from sklearn.feature_selection import RFE, f_regression
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestRegressor
import numpy as np
from minepy import MINE
np.random.seed(0)
size = 750
X = np.random.uniform(0, 1, (size, 14))
#"Friedamn #1” regression problem
Y = (10 * np.sin(np.pi*X[:,0]*X[:,1]) + 20*(X[:,2] - .5)**2 +
10*X[:,3] + 5*X[:,4] + np.random.normal(0,1))
#Add 3 additional correlated variables (correlated with X1-X3)
X[:,10:] = X[:,:4] + np.random.normal(0, .025, (size,4))
names = ["x%s" % i for i in range(1,15)]
ranks = {}
def rank_to_dict(ranks, names, order=1):
minmax = MinMaxScaler()
ranks = minmax.fit_transform(order*np.array([ranks]).T).T[0]
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks ))
lr = LinearRegression(normalize=True)
lr.fit(X, Y)
ranks["Linear reg"] = rank_to_dict(np.abs(lr.coef_), names)
ridge = Ridge(alpha=7)
ridge.fit(X, Y)
ranks["Ridge"] = rank_to_dict(np.abs(ridge.coef_), names)
lasso = Lasso(alpha=.05)
lasso.fit(X, Y)
ranks["Lasso"] = rank_to_dict(np.abs(lasso.coef_), names)
rlasso = RandomizedLasso(alpha=0.04)
rlasso.fit(X, Y)
ranks["Stability"] = rank_to_dict(np.abs(rlasso.scores_), names)
#stop the search when 5 features are left (they will get equal scores)
rfe = RFE(lr, n_features_to_select=5)
rfe.fit(X,Y)
ranks["RFE"] = rank_to_dict(map(float, rfe.ranking_), names, order=-1)
rf = RandomForestRegressor()
rf.fit(X,Y)
ranks["RF"] = rank_to_dict(rf.feature_importances_, names)
f, pval = f_regression(X, Y, center=True)
ranks["Corr."] = rank_to_dict(f, names)
mine = MINE()
mic_scores = []
for i in range(X.shape[1]):
mine.compute_score(X[:,i], Y)
m = mine.mic()
mic_scores.append(m)
ranks["MIC"] = rank_to_dict(mic_scores, names)
r = {}
for name in names:
r[name] = round(np.mean([ranks[method][name]
for method in ranks.keys()]), 2)
methods = sorted(ranks.keys())
ranks["Mean"] = r
methods.append("Mean")
print "\t%s" % "\t".join(methods)
for name in names:
print "%s\t%s" % (name, "\t".join(map(str,
[ranks[method][name] for method in methods])))
从以上结果中可以找到一些有趣的发现:
Lasso能够挑出一些优质特征,同时让其他特征的系数趋于0。当如需要减少特征数的时候它很有用,但是对于数据理解来说不是很好用。(例如在结果表中,X11,X12,X13的得分都是0,好像他们跟输出变量之间没有很强的联系,但实际上不是这样的)
稳定性选择常常是一种既能够有助于理解数据又能够挑出优质特征的这种选择,在结果表中就能很好的看出。像Lasso一样,它能找到那些性能比较好的特征(X1,X2,X4,X5),同时,与这些特征关联度很强的变量也得到了较高的得分。
七、总结
特征选择在很多机器学习和数据挖掘场景中都是非常有用的。在使用的时候要弄清楚自己的目标是什么,然后找到哪种方法适用于自己的任务。当选择最优特征以提升模型性能的时候,可以采用交叉验证的方法来验证某种方法是否比其他方法要好。当用特征选择的方法来理解数据的时候要留心,特征选择模型的稳定性非常重要,稳定性差的模型很容易就会导致错误的结论。对数据进行二次采样然后在子集上运行特征选择算法能够有所帮助,如果在各个子集上的结果是一致的,那就可以说在这个数据集上得出来的结论是可信的,可以用这种特征选择模型的结果来理解数据。
来源:https://www.cnblogs.com/hhh5460/p/5186226.html
“整理不易,点赞三连↓