【机器学习基础】对"样本不均衡"的处理

机器学习初学者

共 1782字,需浏览 4分钟

 ·

2021-04-23 17:26

作者:时晴 炼丹小仙女


样本不均的问题大家已经很常见了,我们总是能看到某一个类目的数量远高于其他类目,举个例子,曝光转化数远低于曝光未转化数。样本不均严重影响了模型的效果,甚至影响到我们对模型好坏的判断,因为模型对占比比较高的类目准确率非常高,对占比很低的类目预估的偏差特别大,但是由于占比较高的类目对loss/metric影响较大,我们会认为得到了一个较优的模型。比如像是异常检测问题,我们直接返回没有异常,也能得到一个很高的准确率。



重采样


这个是目前使用频率最高的方式,可以对“多数”样本降采样,也可以对“少数”样本过采样,如下图所示:

重采样的缺点也比较明显,过采样对少数样本"过度捕捞",降采样会丢失大量信息。


重采样的方案也有很多,最简单的就是随机过采样/降采样,使得各个类别的数量大致相同。还有一些复杂的采样方式,比如先对样本聚类,在需要降采样的样本上,按类别进行降采样,这样能丢失较少的信息。过采样的话,可以不用简单的copy,可以加一点点"噪声",生成更多的样本。



Tomek links


Tomek连接指的是在空间上"最近"的样本,但是是不同类别的样本。删除这些pair中,占大多数类别的样本。通过这种降采样方式,有利于分类模型的学习,如下图所示:



SMOTE


这个方法可以给少数样本做扩充,SMOTE在样本空间中少数样本随机挑选一个样本,计算k个邻近的样本,在这些样本之间插入一些样本做扩充,反复这个过程,知道样本均衡,如下图所示:



NearMiss


这是个降采样的方法,通过距离计算,删除掉一些无用的点。

  • NearMiss-1:在多数类样本中选择与最近的3个少数类样本的平均距离最小的样本。

  • NearMiss-2:在多数类样本中选择与最远的3个少数类样本的平均距离最小的样本。

  • NearMiss-3:对于每个少数类样本,选择离它最近的给定数量的多数类样本。

NearMiss-1考虑的是与最近的3个少数类样本的平均距离,是局部的;NearMiss-2考虑的是与最远的3个少数类样本的平均距离,是全局的。NearMiss-1方法得到的多数类样本分布也是“不均衡”的,它倾向于在比较集中的少数类附近找到更多的多数类样本,而在孤立的(或者说是离群的)少数类附近找到更少的多数类样本,原因是NearMiss-1方法考虑的局部性质和平均距离。NearMiss-3方法则会使得每一个少数类样本附近都有足够多的多数类样本,显然这会使得模型的精确度高、召回率低。



评估指标


为了避免对模型的误判,避免使用Accuracy,可以用confusion matrix,precision,recall,f1-score,AUC,ROC等指标。



惩罚项


对少数样本预测错误增大惩罚,是一个比较直接的方式。



使用多种算法


模型融合不止能提升效果,也能解决样本不均的问题,经验上,树模型对样本不均的解决帮助很大,特别是随机森林,Random Forest,XGB,LGB等。因为树模型作用方式类似于if/else,所以迫使模型对少数样本也非常重视。



正确的使用K-fold


当我们对样本过采样时,对过采样的样本使用k-fold,那么模型会过拟合我们过采样的样本,所以交叉验证要在过采样前做。在过采样过程中,应当增加些随机性,避免过拟合。



使用多种重采样的训练集


这种方法可以使用更多的数据获得一个泛化性较强的模型。用所有的少数样本,和多种采样的多数样本,构建多个模型得到多个模型做融合,可以取得不错的效果。



重采样使用不同rate


这个方法和上面的方法很类似,尝试使用各种不同的采样率,训练不同的模型。


没有什么解决样本不均最好的方法,以上内容也没有枚举出所有的解决方案,最好的方案就是尝试使用各种方案。

往期精彩回顾





本站qq群851320808,加入微信群请扫码:

浏览 26
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报