缺陷检测算法汇总(传统+深度学习方式)|综述、源码

共 2077字,需浏览 5分钟

 ·

2021-04-23 03:04

作者丨Tom Hardy@知乎
来源丨https://zhuanlan.zhihu.com/p/305087419

文献资料汇总

https://github.com/Eatzhy/surface-defect-detection
综述:机器视觉表面缺陷检测综述

缺陷检测工具箱

https://github.com/abin24/Saliency-detection-toolbox

基于深度学习方式

1、语义分割方式

https://github.com/Wslsdx/Deep-Learning-Approach-for-Surface-Defect-Detection
https://github.com/LeeWise9/Segmentation-Based-Surface-Defect-Detection
https://github.com/CristinaMa0917/Defects_Detection_MaskRCNN

2、目标检测方式

https://github.com/YeahHuang/Al_surface_defect_detection

3、基于GAN

https://github.com/hukefei/GAN-defect

4、不同行业应用

1)PCB

https://github.com/Ixiaohuihuihui/Tiny-Defect-Detection-for-PCB
https://github.com/chinthysl/AXI_PCB_defect_detection
https://github.com/gustavo95/pcb-defect-detection

2)钢材缺陷检测

https://github.com/khornlund/severstal-steel-defect-detection
https://github.com/Diyago/Severstal-Steel-Defect-Detection
https://github.com/toandaominh1997/Steel-Defect-Detection
https://github.com/rook0falcon/steel-defect-detection

3)胶囊缺陷检测

https://github.com/TSjianjiao/Defect-Detection-with-tensorflow

4)电池缺陷检测

https://github.com/cdeldon/thermography
https://github.com/evip/ButtonDefectDetection

5)织物缺陷检测

https://github.com/weningerleon/TextileDefectDetection
https://github.com/freedom-kevin/defect_detection
https://github.com/Johncheng1/Fabric-defect-detection
https://github.com/luissen/SSDT-A-single-shot-detector-for-PCB--defects
https://github.com/wangerniuniu/FabricDefectDetection
https://github.com/mynameiswangshiyi/AE-BP-fabric-defect-detection

6)水果和蔬菜缺陷检测

https://github.com/shyamsuresh14/Detection-of-defects-in-fruits-and-vegetables

其它

https://github.com/skokec/segdec-net-jim2019
https://github.com/zwb204/Industrial_defect_detection
https://github.com/wuziheng/SiliconWaferDefectDetection
https://github.com/qiucongying/Mcue
https://github.com/yjphhw/SACNN

缺陷检测数据集

https://github.com/abin24/Surface-Inspection-defect-detection-dataset
https://github.com/Eatzhy/Surface-defect-Detection-dataset

 End 


声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。


浏览 51
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报