【深度学习】2021年深度学习哪些方向比较新颖,处于上升期或者朝阳阶段,没那么饱和,比较有研究潜力?

机器学习初学者

共 2707字,需浏览 6分钟

 ·

2021-06-16 11:19

先写两个最近火热我比较看好的方向TransformerSelf-Supervised,我这里举的例子倾向于计算机视觉方向。最后再补充Zero-Shot多模态两个方向。

1.Transformer

自从去年DETR和ViT出来之后,计算机视觉领域掀起了Transformer狂潮。目前可以做的主要有两个路径,一个是魔改DETR和ViT,另一个是不同task迁移算法

魔改DETR和ViT的方法,无非是引入local和hierarchical,或者魔改算子。

不同task迁移算法主要是探究如何针对不同的task做适配设计。

其中魔改DETR的可以参考以下工作:

[Deformable DETR] [TSP-FCOS/TSP-RCNN] [UP-DETR] [SMCA] [Meta-DETR] [DA-DETR]

其中魔改ViT的可以参考以下工作:

魔改算子:

[LambdaResNets] [DeiT] [VTs] [So-ViT] [LeViT] [CrossViT] [DeepViT] [TNT] [T2T-ViT]

[BoTNet] [Visformer]

引入local或者hierarchical:

[PVT] [FPT] [PiT] [LocalViT] [SwinT] [MViT] [Twins]

Swin Transformer对CNN的降维打击

引入卷积:

[CPVT] [CvT] [ConViT] [CeiT] [CoaT] [ConTNet]

不同task迁移算法的可以参考以下工作:

ViT+Seg [SETR] [TransUNet] [DPT] [U-Transformer]

ViT+Det [ViT-FRCNN] [ACT]

ViT+SOT [TransT] [TMT]

ViT+MOT [TransTrack] [TrackFormer] [TransCenter]

ViT+Video [STTN] [VisTR] [VidTr] [ViViT] [TimeSformer] [VTN]

ViT+GAN [TransGAN] [AOT-GAN] [GANsformer]

ViT+3D [Group-Free] [Pointformer] [PCT] [PointTransformer] [DTNet] [MLMSPT]

以上几个task是重灾区(重灾区的意思是听我一句劝,你把握不住)

ViT+Multimodal [Fast and Slow] [VATT]

ViT+Pose [TransPose] [TFPose]

ViT+SR [TTSR]

ViT+Crowd [TransCrowd]

ViT+NAS [BossNAS]

ViT+ReID [TransReID]

ViT+Face [FaceT]

想一想算子怎么魔改,或者还有什么task没有做的

2.Self-Supervised

Self-Supervised自从何恺明做出MoCo以来再度火热,目前仍然是最为火热的方向之一。目前可以做的主要有三个路径,一个是探索退化解的充要条件,一个是Self-Supervised+Transformer探索上限,还有一个是探索非对比学习的方法。

探索退化解的充要条件主要是探索无negative pair的时候,避免退化解的最优方案是什么。

[SimCLR] [BYOL] [SwAV] [SimSiam] [Twins]

Self-Supervised: 如何避免退化解

Self-Supervised+Transformer是MoCov3首次提出的,NLP领域强大的预训练模型(BERT和GPT-3)都是Transformer架构的,CV可以尝试去复制NLP的路径,探究Self-Supervised+Transformer的上限。

[MoCov1] [MoCov2] [MoCov3] [SiT]

MoCo三部曲

探索非对比学习的方法就是要设计合适的proxy task。

基于上下文 [Unsupervised Visual Representation Learning by Context Prediction] [Unsupervised Representation Learning by Predicting Image Rotations] [Self-supervised Label Augmentation via Input Transformations]

基于时序 [Time-Contrastive Networks: Self-Supervised Learning from Video] [Unsupervised Learning of Visual Representations using Videos]

刚写了基于时序,何恺明和Ross Girshick就搞了个时序的

A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning

何恺明+Ross Girshick:深入探究无监督时空表征学习

3. Zero-Shot

最近因为CLIP的出现,Zero-Shot可能会引起一波热潮ViLD将CLIP成功应用于目标检测领域,相信未来会有越来越多的基于CLIP的Zero-Shot方法

ViLD:超越Supervised的Zero-Shot检测器

4. 多模态

最近的ViLT结合了BERT和ViT来做多模态,并且通过增加标志位来巧妙的区分不同模态,感觉是一个非常好的做多模态的思路,相信未来会有更强大的多模态出现。

ViLT:最简单的多模态Transformer

至于最近火热的MLP架构,极其不推荐,很沙雕


最后,适当灌水,有能力还是要做有影响力的工作。

往期精彩回顾





本站qq群851320808,加入微信群请扫码:

浏览 103
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报