源码解析 | Flink Timer(定时器)机制与实现

程序源代码

共 1309字,需浏览 3分钟

 ·

2020-09-19 18:20

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

大数据技术与架构
点击右侧关注,大数据开发领域最强公众号!

暴走大数据
点击右侧关注,暴走大数据!


Timer简介

Timer(定时器)是Flink Streaming API提供的用于感知并利用处理时间/事件时间变化的机制。官网上上给出的描述如下:

Timers are what make Flink streaming applications reactive and adaptable to processing and event time changes.

对于普通用户来说,最常见的显式利用Timer的地方就是KeyedProcessFunction。我们在其processElement()方法中注册Timer,然后覆写其onTimer()方法作为Timer触发时的回调逻辑。根据时间特征的不同:

  • 处理时间—调用Context.timerService().registerProcessingTimeTimer()注册;onTimer()在系统时间戳达到Timer设定的时间戳时触发。

  • 事件时间—调用Context.timerService().registerEventTimeTimer()注册;onTimer()在Flink内部水印达到或超过Timer设定的时间戳时触发。

举个栗子,按天实时统计指标并存储在状态中,每天0点清除状态重新统计,就可以在processElement()方法里注册Timer。

ctx.timerService().registerProcessingTimeTimer(
tomorrowZeroTimestampMs(System.currentTimeMillis(), 8) + 1
);

public static long tomorrowZeroTimestampMs(long now, int timeZone) {
return now - (now + timeZone * 3600000) % 86400000 + 86400000;
}

再在onTimer()方法里执行state.clear()。so easy。

除了KeyedProcessFunction之外,Timer在窗口机制中也有重要的地位。提起窗口自然就能想到Trigger,即触发器。来看下Flink自带的EventTimeTrigger的部分代码,它是事件时间特征下的默认触发器。


    @Override
public TriggerResult onElement(Object element, long timestamp, TimeWindow window, TriggerContext ctx) throws Exception {
if (window.maxTimestamp() <= ctx.getCurrentWatermark()) {
return TriggerResult.FIRE;
} else {
ctx.registerEventTimeTimer(window.maxTimestamp());
return TriggerResult.CONTINUE;
}
}

@Override
public TriggerResult onEventTime(long time, TimeWindow window, TriggerContext ctx) {
return time == window.maxTimestamp() ?
TriggerResult.FIRE :
TriggerResult.CONTINUE;
}

可见,当水印还没有到达窗口右边沿时,就注册以窗口右边沿为时间戳的Timer。Timer到期后触发onEventTime()方法,进而触发该窗口相关联的Trigger。

文章开头引用的blog从用户的角度给出了Flink Timer的4大特点,如下图所示。

经由上面的介绍,我们有了两个入手点(KeyedProcessFunction、Trigger)来分析Timer的细节。接下来从前者入手,let's get our hands dirty。

TimerService、InternalTimerService

负责实际执行KeyedProcessFunction的算子是KeyedProcessOperator,其中以内部类的形式实现了KeyedProcessFunction需要的上下文类Context,如下所示。

    private class ContextImpl extends KeyedProcessFunction<K, IN, OUT>.Context {
private final TimerService timerService;
private StreamRecord<IN> element;

ContextImpl(KeyedProcessFunction<K, IN, OUT> function, TimerService timerService) {
function.super();
this.timerService = checkNotNull(timerService);
}

@Override
public Long timestamp() {
checkState(element != null);
if (element.hasTimestamp()) {
return element.getTimestamp();
} else {
return null;
}
}

@Override
public TimerService timerService() {
return timerService;
}

// 以下略...
}

可见timerService()方法返回的是外部传入的TimerService实例,那么我们就回到KeyedProcessOperator看一下它的实现,顺便放个类图。

public class KeyedProcessOperator<K, IN, OUT>
extends AbstractUdfStreamOperator<OUT, KeyedProcessFunction<K, IN, OUT>>
implements OneInputStreamOperator<IN, OUT>, Triggerable<K, VoidNamespace> {
private static final long serialVersionUID = 1L;
private transient TimestampedCollector<OUT> collector;
private transient ContextImpl context;
private transient OnTimerContextImpl onTimerContext;

public KeyedProcessOperator(KeyedProcessFunction<K, IN, OUT> function) {
super(function);
chainingStrategy = ChainingStrategy.ALWAYS;
}

@Override
public void open() throws Exception {
super.open();
collector = new TimestampedCollector<>(output);
InternalTimerService<VoidNamespace> internalTimerService =
getInternalTimerService("user-timers", VoidNamespaceSerializer.INSTANCE, this);
TimerService timerService = new SimpleTimerService(internalTimerService);
context = new ContextImpl(userFunction, timerService);
onTimerContext = new OnTimerContextImpl(userFunction, timerService);
}

@Override
public void onEventTime(InternalTimer<K, VoidNamespace> timer) throws Exception {
collector.setAbsoluteTimestamp(timer.getTimestamp());
invokeUserFunction(TimeDomain.EVENT_TIME, timer);
}

@Override
public void onProcessingTime(InternalTimer<K, VoidNamespace> timer) throws Exception {
collector.eraseTimestamp();
invokeUserFunction(TimeDomain.PROCESSING_TIME, timer);
}

@Override
public void processElement(StreamRecord<IN> element) throws Exception {
collector.setTimestamp(element);
context.element = element;
userFunction.processElement(element.getValue(), context, collector);
context.element = null;
}

private void invokeUserFunction(
TimeDomain timeDomain,
InternalTimer<K, VoidNamespace> timer) throws Exception {
onTimerContext.timeDomain = timeDomain;
onTimerContext.timer = timer;
userFunction.onTimer(timer.getTimestamp(), onTimerContext, collector);
onTimerContext.timeDomain = null;
onTimerContext.timer = null;
}

// 以下略...
}

通过阅读上述代码,可以总结出:

  • TimerService接口的实现类为SimpleTimerService,它实际上又是InternalTimerService的非常简单的代理(真的很简单,代码略去)。

  • InternalTimerService的实例由getInternalTimerService()方法取得,该方法定义在所有算子的基类AbstractStreamOperator中。它比较重要,后面再提。

  • KeyedProcessOperator.processElement()方法调用用户自定义函数的processElement()方法,顺便将上下文实例ContextImpl传了进去,所以用户可以由它获得TimerService来注册Timer。

  • Timer在代码中叫做InternalTimer(是个接口)。

  • 当Timer触发时,实际上是根据时间特征调用onProcessingTime()/onEventTime()方法(这两个方法来自Triggerable接口),进而触发用户函数的onTimer()回调逻辑。后面还会见到它们。

接下来就看看InternalTimerService是如何取得的。


    /**
* Returns a {@link InternalTimerService} that can be used to query current processing time
* and event time and to set timers. An operator can have several timer services, where
* each has its own namespace serializer. Timer services are differentiated by the string
* key that is given when requesting them, if you call this method with the same key
* multiple times you will get the same timer service instance in subsequent requests.
*
*

Timers are always scoped to a key, the currently active key of a keyed stream operation.
* When a timer fires, this key will also be set as the currently active key.
*
*

Each timer has attached metadata, the namespace. Different timer services
* can have a different namespace type. If you don't need namespace differentiation you
* can use {@link VoidNamespaceSerializer} as the namespace serializer.
*
* @param name The name of the requested timer service. If no service exists under the given
* name a new one will be created and returned.
* @param namespaceSerializer {@code TypeSerializer} for the timer namespace.
* @param triggerable The {@link Triggerable} that should be invoked when timers fire
* @param The type of the timer namespace.
*/
public <K, N> InternalTimerService<N> getInternalTimerService(
String name,
TypeSerializer<N> namespaceSerializer,
Triggerable<K, N> triggerable) {
checkTimerServiceInitialization();

KeyedStateBackend<K> keyedStateBackend = getKeyedStateBackend();
TypeSerializer<K> keySerializer = keyedStateBackend.getKeySerializer();
InternalTimeServiceManager<K> keyedTimeServiceHandler = (InternalTimeServiceManager<K>) timeServiceManager;
TimerSerializer<K, N> timerSerializer = new TimerSerializer<>(keySerializer, namespaceSerializer);
return keyedTimeServiceHandler.getInternalTimerService(name, timerSerializer, triggerable);
}

该方法的注释描述非常清楚,所以一起粘贴过来。简单来讲:

  • 每个算子可以有一个或多个InternalTimerService。

  • InternalTimerService的四要素是:名称、命名空间类型N(及其序列化器)、键类型K(及其序列化器),还有上文所述Triggerable接口的实现。

  • InternalTimerService经由InternalTimeServiceManager.getInternalTimerService()方法取得。

例如,上文KeyedProcessOperator初始化的InternalTimerService,名称为"user-timers",命名空间类型为空(VoidNamespace),Triggerable实现类则是其本身。如果是WindowOperator的话,其InternalTimerService的名称就是"window-timers",命名空间类型则是Window。

InternalTimerService在代码中仍然是一个接口,其代码如下。方法的签名除了多了命名空间之外(命名空间对用户透明),其他都与TimerService提供的相同。

public interface InternalTimerService<N> {
long currentProcessingTime();
long currentWatermark();

void registerProcessingTimeTimer(N namespace, long time);
void deleteProcessingTimeTimer(N namespace, long time);

void registerEventTimeTimer(N namespace, long time);
void deleteEventTimeTimer(N namespace, long time);

// ...
}

下面更进一步,看看InternalTimeServiceManager是如何实现的。

InternalTimeServiceManager、TimerHeapInternalTimer

顾名思义,InternalTimeServiceManager用于管理各个InternalTimeService。部分代码如下:

public class InternalTimeServiceManager<K> {
@VisibleForTesting
static final String TIMER_STATE_PREFIX = "_timer_state";
@VisibleForTesting
static final String PROCESSING_TIMER_PREFIX = TIMER_STATE_PREFIX + "/processing_";
@VisibleForTesting
static final String EVENT_TIMER_PREFIX = TIMER_STATE_PREFIX + "/event_";

private final KeyGroupRange localKeyGroupRange;
private final KeyContext keyContext;
private final PriorityQueueSetFactory priorityQueueSetFactory;
private final ProcessingTimeService processingTimeService;
private final Map<String, InternalTimerServiceImpl<K, ?>> timerServices;
private final boolean useLegacySynchronousSnapshots;

@SuppressWarnings("unchecked")
public <N> InternalTimerService<N> getInternalTimerService(
String name,
TimerSerializer<K, N> timerSerializer,
Triggerable<K, N> triggerable) {
InternalTimerServiceImpl<K, N> timerService = registerOrGetTimerService(name, timerSerializer);
timerService.startTimerService(
timerSerializer.getKeySerializer(),
timerSerializer.getNamespaceSerializer(),
triggerable);
return timerService;
}

@SuppressWarnings("unchecked")
<N> InternalTimerServiceImpl<K, N> registerOrGetTimerService(String name, TimerSerializer<K, N> timerSerializer) {
InternalTimerServiceImpl<K, N> timerService = (InternalTimerServiceImpl<K, N>) timerServices.get(name);
if (timerService == null) {
timerService = new InternalTimerServiceImpl<>(
localKeyGroupRange,
keyContext,
processingTimeService,
createTimerPriorityQueue(PROCESSING_TIMER_PREFIX + name, timerSerializer),
createTimerPriorityQueue(EVENT_TIMER_PREFIX + name, timerSerializer));
timerServices.put(name, timerService);
}
return timerService;
}

private <N> KeyGroupedInternalPriorityQueue<TimerHeapInternalTimer<K, N>> createTimerPriorityQueue(
String name,
TimerSerializer<K, N> timerSerializer) {
return priorityQueueSetFactory.create(
name,
timerSerializer);
}

// 以下略...
}

从上面的代码可以得知:

  • Flink中InternalTimerService的最终实现实际上是InternalTimerServiceImpl类,而InternalTimer的最终实现是TimerHeapInternalTimer类。

  • InternalTimeServiceManager会用HashMap维护一个特定键类型K下所有InternalTimerService的名称与实例映射。如果名称已经存在,就会直接返回,不会重新创建。

  • 初始化InternalTimerServiceImpl时,会同时创建两个包含TimerHeapInternalTimer的优先队列(该优先队列是Flink自己实现的),分别用于维护事件时间和处理时间的Timer。

说了这么多,最需要注意的是,Timer是维护在JVM堆内存中的,如果频繁注册大量Timer,或者同时触发大量Timer,也是一笔不小的开销。

TimerHeapInternalTimer的实现比较简单,主要就是4个字段和1个方法。为了少打点字,把注释也弄过来。

    /**
* The key for which the timer is scoped.
*/

@Nonnull
private final K key;
/**
* The namespace for which the timer is scoped.
*/

@Nonnull
private final N namespace;
/**
* The expiration timestamp.
*/

private final long timestamp;
/**
* This field holds the current physical index of this timer when it is managed by a timer heap so that we can
* support fast deletes.
*/

private transient int timerHeapIndex;

@Override
public int comparePriorityTo(@Nonnull InternalTimer<?, ?> other) {
return Long.compare(timestamp, other.getTimestamp());
}
}

可见,Timer的scope有两个,一是数据的key,二是命名空间。但是用户不会感知到命名空间的存在,所以我们可以简单地认为Timer是以key级别注册的(Timer四大特点之1)。正确估计key的量可以帮助我们控制Timer的量。

timerHeapIndex是这个Timer在优先队列里存储的下标。优先队列通常用二叉堆实现,而二叉堆可以直接用数组存储,所以让Timer持有其对应的下标可以较快地从队列里删除它。

comparePriorityTo()方法则用于确定Timer的优先级,显然Timer的优先队列是一个按Timer时间戳为关键字排序的最小堆。下面粗略看看该最小堆的实现。

HeapPriorityQueueSet

上面代码中PriorityQueueSetFactory.create()方法创建的优先队列实际上的类型是HeapPriorityQueueSet。它的基本思路与Java自带的PriorityQueue相同,但是在其基础上加入了按key去重的逻辑(Timer四大特点之2)。不妨列出它的部分代码。

    private final HashMap<T, T>[] deduplicationMapsByKeyGroup;
private final KeyGroupRange keyGroupRange;

@Override
@Nullable
public T poll() {
final T toRemove = super.poll();
return toRemove != null ? getDedupMapForElement(toRemove).remove(toRemove) : null;
}

@Override
public boolean add(@Nonnull T element) {
return getDedupMapForElement(element).putIfAbsent(element, element) == null && super.add(element);
}

@Override
public boolean remove(@Nonnull T toRemove) {
T storedElement = getDedupMapForElement(toRemove).remove(toRemove);
return storedElement != null && super.remove(storedElement);
}

private HashMap<T, T> getDedupMapForKeyGroup(
@Nonnegative int keyGroupId) {
return deduplicationMapsByKeyGroup[globalKeyGroupToLocalIndex(keyGroupId)];
}

private HashMap<T, T> getDedupMapForElement(T element) {
int keyGroup = KeyGroupRangeAssignment.assignToKeyGroup(
keyExtractor.extractKeyFromElement(element),
totalNumberOfKeyGroups);
return getDedupMapForKeyGroup(keyGroup);
}

private int globalKeyGroupToLocalIndex(int keyGroup) {
checkArgument(keyGroupRange.contains(keyGroup), "%s does not contain key group %s", keyGroupRange, keyGroup);
return keyGroup - keyGroupRange.getStartKeyGroup();
}

要搞懂它,必须解释一下KeyGroup和KeyGroupRange。KeyGroup是Flink内部KeyedState的原子单位,亦即一些key的组合。一个Flink App的KeyGroup数量与最大并行度相同,将key分配到KeyGroup的操作则是经典的取hashCode+取模。而KeyGroupRange则是一些连续KeyGroup的范围,每个Flink sub-task都只包含一个KeyGroupRange。也就是说,KeyGroupRange可以看做当前sub-task在本地维护的所有key。

解释完毕。容易得知,上述代码中的那个HashMap[]数组就是在KeyGroup级别对key进行去重的容器,数组中每个元素对应一个KeyGroup。以插入一个Timer的流程为例:

  • 从Timer中取出key,计算该key属于哪一个KeyGroup;

  • 计算出该KeyGroup在整个KeyGroupRange中的偏移量,按该偏移量定位到HashMap[]数组的下标;

  • 根据putIfAbsent()方法的语义,只有当对应HashMap不存在该Timer的key时,才将Timer插入最小堆中。

接下来回到主流程,InternalTimerServiceImpl。


InternalTimerServiceImpl

在这里,我们终于可以看到注册和移除Timer方法的最底层实现了。注意ProcessingTimeService是Flink内部产生处理时间的时间戳的服务。

    private final ProcessingTimeService processingTimeService;
private final KeyGroupedInternalPriorityQueue<TimerHeapInternalTimer<K, N>> processingTimeTimersQueue;
private final KeyGroupedInternalPriorityQueue<TimerHeapInternalTimer<K, N>> eventTimeTimersQueue;
private ScheduledFuture<?> nextTimer;

@Override
public void registerProcessingTimeTimer(N namespace, long time) {
InternalTimer<K, N> oldHead = processingTimeTimersQueue.peek();
if (processingTimeTimersQueue.add(new TimerHeapInternalTimer<>(time, (K) keyContext.getCurrentKey(), namespace))) {
long nextTriggerTime = oldHead != null ? oldHead.getTimestamp() : Long.MAX_VALUE;
if (time < nextTriggerTime) {
if (nextTimer != null) {
nextTimer.cancel(false);
}
nextTimer = processingTimeService.registerTimer(time, this);
}
}
}

@Override
public void registerEventTimeTimer(N namespace, long time) {
eventTimeTimersQueue.add(new TimerHeapInternalTimer<>(time, (K) keyContext.getCurrentKey(), namespace));
}

@Override
public void deleteProcessingTimeTimer(N namespace, long time) {
processingTimeTimersQueue.remove(new TimerHeapInternalTimer<>(time, (K) keyContext.getCurrentKey(), namespace));
}

@Override
public void deleteEventTimeTimer(N namespace, long time) {
eventTimeTimersQueue.remove(new TimerHeapInternalTimer<>(time, (K) keyContext.getCurrentKey(), namespace));
}

由此可见,注册Timer实际上就是为它们赋予对应的时间戳、key和命名空间,并将它们加入对应的优先队列。特别地,当注册基于处理时间的Timer时,会先检查要注册的Timer时间戳与当前在最小堆堆顶的Timer的时间戳的大小关系。如果前者比后者要早,就会用前者替代掉后者,因为处理时间是永远线性增长的。

Timer注册好了之后是如何触发的呢?先来看处理时间的情况。

InternalTimerServiceImpl类继承了ProcessingTimeCallback接口,表示它可以触发处理时间的回调。该接口只要求实现一个方法,如下。

    @Override
private Triggerable<K, N> triggerTarget;

public void onProcessingTime(long time) throws Exception {
nextTimer = null;
InternalTimer<K, N> timer;

while ((timer = processingTimeTimersQueue.peek()) != null && timer.getTimestamp() <= time) {
processingTimeTimersQueue.poll();
keyContext.setCurrentKey(timer.getKey());
triggerTarget.onProcessingTime(timer);
}

if (timer != null && nextTimer == null) {
nextTimer = processingTimeService.registerTimer(timer.getTimestamp(), this);
}
}

可见,当onProcessingTime()方法被触发回调时,就会按顺序从队列中获取到比时间戳time小的所有Timer,并挨个执行Triggerable.onProcessingTime()方法,也就是在上文KeyedProcessOperator的同名方法,用户自定义的onTimer()逻辑也就被执行了。

最后来到ProcessingTimeService的实现类SystemProcessingTimeService,它是用调度线程池实现回调的。相关的代码如下。

    private final ScheduledThreadPoolExecutor timerService;

@Override
public ScheduledFuture<?> registerTimer(long timestamp, ProcessingTimeCallback target) {
long delay = Math.max(timestamp - getCurrentProcessingTime(), 0) + 1;

try {
return timerService.schedule(
new TriggerTask(status, task, checkpointLock, target, timestamp), delay, TimeUnit.MILLISECONDS);
} catch (RejectedExecutionException e) {
final int status = this.status.get();
if (status == STATUS_QUIESCED) {
return new NeverCompleteFuture(delay);
} else if (status == STATUS_SHUTDOWN) {
throw new IllegalStateException("Timer service is shut down");
} else {
throw e;
}
}
}

// 注意:这个是TriggerTask线程的run()方法
@Override
public void run() {
synchronized (lock) {
try {
if (serviceStatus.get() == STATUS_ALIVE) {
target.onProcessingTime(timestamp);
}
} catch (Throwable t) {
TimerException asyncException = new TimerException(t);
exceptionHandler.handleAsyncException("Caught exception while processing timer.", asyncException);
}
}
}

可见,onProcessingTime()在TriggerTask线程中被回调,而TriggerTask线程按照Timer的时间戳来调度。到这里,处理时间Timer的情况就讲述完毕了。

再来看事件时间的情况。事件时间与内部时间戳无关,而与水印有关。以下是InternalTimerServiceImpl.advanceWatermark()方法的代码。

    public void advanceWatermark(long time) throws Exception {
currentWatermark = time;
InternalTimer<K, N> timer;

while ((timer = eventTimeTimersQueue.peek()) != null && timer.getTimestamp() <= time) {
eventTimeTimersQueue.poll();
keyContext.setCurrentKey(timer.getKey());
triggerTarget.onEventTime(timer);
}
}

该逻辑与处理时间相似,只不过从回调onProcessingTime()变成了回调onEventTime()而已。然后追踪它的调用链,回到InternalTimeServiceManager的同名方法。

    public void advanceWatermark(Watermark watermark) throws Exception {
for (InternalTimerServiceImpl<?, ?> service : timerServices.values()) {
service.advanceWatermark(watermark.getTimestamp());
}
}

继续向上追溯,到达终点:算子基类AbstractStreamOperator中处理水印的方法processWatermark()。当水印到来时,就会按着上述调用链流转到InternalTimerServiceImpl中,并触发所有早于水印时间戳的Timer了。

    public void processWatermark(Watermark mark) throws Exception {
if (timeServiceManager != null) {
timeServiceManager.advanceWatermark(mark);
}
output.emitWatermark(mark);
}

至此,我们算是基本打通了Flink Timer机制的实现细节

版权声明:

本文为大数据技术与架构整理,原作者独家授权。未经原作者允许转载追究侵权责任。
编辑|冷眼丶
微信公众号|import_bigdata


欢迎点赞+收藏+转发朋友圈素质三连


文章不错?点个【在看】吧! ?

浏览 78
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报