根据“气质”,AI可以准确识别婴儿年龄、性别
大数据文摘转载自学术头条
仅根据外貌以及行为特征,例如婴儿表现出的恐惧、微笑或大笑,很难区分新生儿是男孩或女孩。但是一旦婴儿长到一岁左右,情况就会开始改变,不同新生儿的不同“气质”,就开始显现出来。
PLOS ONE 的一项新研究使用机器学习分析了 4,438 名婴儿的“气质”数据,试图按性别和年龄对婴儿进行分类。
结果表明,计算机算法根据婴儿出生后 48 周内的气质数据,确定婴儿的年龄要比来破译婴儿的性别容易得多。然而,一旦婴儿超过 48 周大,考虑到性别分类算法得到改善,婴儿期的性别差异在这段时间变得更加突出。
该研究的主要作者、华盛顿州立大学心理学教授 Maria Gartstein 说:“这至少暗示了一幅图景,即在一岁左右,新生儿的性情开始以更强大的方式因性别而有所不同。
以前的研究已经调查了婴儿的年龄和基于性别的气质差异,但很少有研究将这两个变量放在一起。Gartstein 说,这主要是由于单个实验室难以收集足够的婴儿行为数据,以使他们的发现在统计上可靠并与足够广泛的人群相关。
为了克服这一挑战,Gartstein 和她的同事联系了更多科学家,汇总了 2006-2019 年间收集的婴儿行为问卷数据。该问卷是一种家长报告的气质测量方法,要求家长记录他们的孩子从 3 到 12 个月大时表现出的 191 种不同行为的频率。然后,这些数据可用于根据 14 个不同的气质维度对婴儿进行评分,例如微笑、活动水平、愤怒/沮丧和恐惧。
尽管已经开发了许多用于测量儿童气质的方法,包括各种观察程序和生理技术,但总体而言,父母报告仍然是最广泛使用的。
目前,罗斯巴特的心理生物学模型通常被认为是目前最广泛接受的气质理论或框架。这种方法将气质视为基于体质的反应和自我调节的个体差异,体质指的是个体相对持久的生物构成,受遗传、发育和经验的影响;反应性是指情绪、运动和注意力反应的可唤醒性,通过阈值、潜伏期、强度、达到峰值强度的时间和反应的恢复时间来评估;自我调节体现了可用于调节反应性的过程,例如舒缓性和抑制性控制。
最终,Gartstein 及其同事收集了 2,298 名男孩和 2,093 名女孩的数据。为进行分析,爱达荷大学的合著者 Erich Seamon 使用机器学习算法将 0-24 周龄、24-48 周龄、超过 48 周的婴儿按照男性或女性,根据 14 个气质维度进行评分。准确率随着年龄的增长而增加,从年龄组 1 的 38% 到年龄组 3 的 57% 不等。
Gartstein 表示,“这是一个很酷的机会,可以使用这些机器学习技术进行演示研究,这些技术需要非常大的数据集,并且在社会情感发展研究中并不常见,它让我们第一次有机会真正考虑性别差异在多大程度上受到婴儿年龄的影响。”
研究人员的分析结果表明,恐惧是区分年龄最小和中等年龄组男孩和女孩的最重要特征。随着婴儿年龄的增长,反应能力下降,或者能够从高压力情况中迅速恢复,表现出更多的主动互动和与人和物体接触的意愿,变得更有影响力。
对于 48 周以上的婴儿,低强度的娱乐或享受熟悉的平静活动(例如与父母玩躲猫猫)是区分男孩和女孩的最有影响的变量。总体而言,女孩在恐惧、反应下降和低强度快感方面表现更高,而男孩在对外接触方面表现更高。
有趣的是,某些气质特征降低了机器学习算法在按性别对婴儿进行分类时的准确性,特别是最小年龄组的可爱、声音反应、微笑和笑声,以及最大年龄组的微笑、笑声、感知敏感性(例如注意到非常细微的变化)和活动。
尽管许多因素可能会影响研究人员的结果模式,但他们的工作与之前的研究结果一致,即社会化的影响确实在一岁左右开始发挥作用。
Gartstein 表示, “母亲对他们的儿子和女儿采取不同的社会化方法,随着时间的推移,这种差异会导致在气质方面的不同轨迹。具体来说,父母可能会优先考虑女儿的关系取向,而优先考虑儿子的能力和自主权。”
展望未来,Gartstein 表示,接下来她和她的合作者将用当前研究开发的机器学习方法,来调查其他关于婴儿社会情绪发展的难以回答的问题。
Gartstein 说,“我现在真正感兴趣的是,看看是否可以根据孩子的大脑活动来预测看护质量的差异。我们为这项研究开发的分析方法在回答依赖多个输入变量来解决分类问题的问题时特别强大。”
参考资料:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266026
https://techxplore.com/news/2022-05-ai-infant-age-gender-based.html