最全盘点:27类激光技术前沿应用
点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达
近年来,以激光器为基础的激光产业在全球发展迅猛。据统计,每年和激光相关产品和服务的市场价值高达上万亿美元。得益于应用领域的不断拓展,中国激光产业也逐渐驶入高速发展期。
本文将为大家介绍27类激光前沿应用,并对激光器的选择提供一些参考性建议。
数字PCR是第三代PCR技术,是一种核酸分子绝对定量技术。与传统qPCR技术相比,数字PCR(dPCR)具有:绝对定量、无需标准品、样品需求低,高灵敏度,高耐受性等特点。
数字PCR一般包括两部分内容,即PCR扩增和荧光信号分析。在PCR 扩增阶段,数字PCR一般需要将样品稀释到单分子水平,并平均分配到几十至几万个单元中进行反应,通过特定激光来激发出通道中的荧光信号。在扩增结束后对各个反应单元的荧光信号进行统计学分析,最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。相对于qPCR技术,dPCR技术具备以下优势:(1)灵敏度可达单个核酸分子:检测限低至0.001%;(2)无需标准品/标准曲线,即可对靶分子起始量进行绝对定量;(3)特别适合基质复杂样品的检测;(4)能够有效区分浓度差异(变化)微小的样品,有更好的准确度、精密度和重复性。目前,数字PCR技术在病原体检测、癌症生物标志物研究和拷贝数变异分析、基因表达分析、环境监测、食品检测等领域得到广泛应用。
常见的数字PCR(dPCR)技术主要有两种:微滴式dPCR(ddPCR)和芯片式dPCR(cdPCR)。两者基本原理相同,由于芯片式dPCR制造芯片的成本较高,目前微滴式dPCR以更低成本、更实用的优势,正越来越受到企业的认可。微滴式dPCR(ddPCR)也在此次疫情防控中有力推动了对疑似疫情感染患者的甄别工作。
主要组成:荧光通道、激光器、光学检测器、数据采集系统等。
激光器选择:高功率稳定性,光斑高斯分布。
常用波长:405nm,473nm,532nm,639nm等。
主要组成:液流系统,光路系统,信号测量和细胞分选等。
激光器要求:高稳定性,低噪声,定制光斑。
常用波长:355nm,360nm,405nm,473nm,488nm,532nm,561nm,593.5nm,640nm,671nm,785nm等。
激光器要求:低噪声,高功率稳定性,窄线宽,自由空间/光纤耦合输出,单波长/多波长可选。
常用波长:266nm,355nm,405nm,473nm,520nm,532nm,561nm,640nm,808nm,980nm等。
激光器要求:光点稳定性好,光斑优。
常用波长:266nm,457nm,532nm,660nm,770-840nm可调谐激光器等。
主要组成:低相干宽带激光光源,光纤迈克尔逊干涉仪,光电探测器等。
激光器要求:较宽的频谱宽度,高输出功率,高功率稳定性,易于耦合。
常用波长:1470nm,1550nm,1710nm等。
激光器要求:高波长稳定性,高功率,优光斑均匀性。
常用波长:473nm,488nm,505nm,514.5nm,532nm,561nm,577nm,639.5nm等。
激光器要求:低噪声,高功率稳定性。
常用波长:532nm、635nm、1064nm等。
激光器要求:根据实验需求选择合适功率档,选配光纤跳线、陶瓷插针、可旋转光纤连接器、光纤支架等。
常用波长:405nm, 457nm, 473nm, 532nm, 561nm, 589nm, 635nm, 808nm, 980nm, 1064nm等。
光动力治疗(PDT)是继外科手术、化学治疗、放射治疗后出现的治疗肿瘤的新技术。具有创伤小、毒性低、选择性好、适用性高等优点。
其原理是应用一种给药方式给予光敏药物后,在一定时间间隔内采用特定波长的光源照射肿瘤部位;利用光敏药物的光敏化特性,使选择性聚集在肿瘤组织的光敏药物活化,在光源的激励下产生一系列的化学、物理、生物等光反应破坏肿瘤。新一代光动力疗法中的光敏药物会将能量传递给周围的氧,生成活性很强的单态氧。单态氧能与附近的生物大分子发生氧化反应,产生细胞毒性进而杀伤肿瘤细胞。
光源是保证光动力治疗顺利实施的必要因素之一。而好的光源应该具备以下几个特点:(1)光波长处于光敏药物吸收峰附近,(2)光源在使用过程中需要有一定的组织穿透性,(3)光功率最好可调,(4)激光的输出可与光纤相结合使用,保证治疗靶向点更加精确等。总而言之,光动力治疗离不开高品质的光源,随着光动力治疗技术的日渐成熟,适用于光动力治疗的光源也将会随着科学研究技术的进步而日臻完善。
激光器要求:连续/脉冲输出,自由空间/光纤耦合输出可选。
常用波长:405nm, 457nm, 532nm, 561nm, 577nm, 589nm, 635nm, 808nm等。
激光器要求:脉冲输出,高能量稳定性。
常用波长:355nm,532nm等。
激光器要求:低噪声、脉冲激光器或连续激光器均可。
常用波长:532nm,589nm,637nm等。
主要组成:光源系统,分光系统,样品检测系统,数据采集及处理系统等。
常用波长:266nm,325nm,360nm,532nm,808nm,980nm等。
激光导星技术 (LGS)是现代大型天文望远镜自适应光学系统的重要组成部分,以钠激光导星发射的光信号波前为标准,测量该波前通过大气产生的相位畸变获得误差信号,通过变形镜校正补偿该误差,使望远镜的实际分辨率达到衍射极限,从而实现对观测目标的高分辨成像。近些年来迅速发展的钠激光导星技术在一定程度上弥补了自适应光学技术的缺点:(1)受大气湍流干扰无法达到理论上的衍射极限;(2)有时只能高清晰地观测有限的空间目标。
钠激光导星的作用就是在待观测目标附近激发足够亮的人造光源。海拔90-110 Km的大气中间层分布着一层厚度为10公里的钠原子层,通过波长为589.159nm高性能激光激发钠原子发出共振荧光,形成一颗人造的点光源,即称为激光钠导星。激光钠导星是国内外地基大口径望远镜自适应光学系统的重要组成部分,钠激光导星自适应光学系统是用于校正天文目标光波前畸变、大幅度扩大空间探测范围、提高地基光学望远镜成像分辨率的有力工具。该项技术在空间目标识别、空间激光通信和天文观测等领域都具有着重要的应用前景。
主要组成:激光器、发射系统,接收系统,波前探测控制系统、图像采集系统等。
激光器要求:高功率、高光束质量、窄线宽、波长可调、高波长稳定性等。
常用波长:589.159nm。
PIV技术是一种瞬态、多点、无接触式的流体力学测速方法。
在流场中散播一些跟踪性与反光性良好的示踪粒子;用激光片光照射到所测流场的切面区域;通过成像记录系统连续摄取两次或多次曝光的粒子图像;再利用图像互关方法分析所拍摄的PIV图像,获得每一小区域中粒子图像的平均位移,由此确定流场切面上整个区域的二维流体速度分布。PIV技术广泛应用在风洞中的流场测量,湍流流场测定,颗粒流的研究等领域。
二维PIV技术近几年主要向着高频率、高精度的方向发展。除此之外,多相流PIV和微PIV也逐渐发展成熟。除此之外,在PIV技术出现以来,三维PIV一直是研究的重点方向,目前学者们也已提出了多种途径来实现三维流场的测量。三维PIV技术的逐步推广,对诸如非定常、非周期性三维流动研究具有重要现实意义。
主要组成:相机,激光器,图像数据采集系统,系统控制/图像数据分析软件。
激光器要求:片光源,连续/单脉冲/双脉冲输出,选配导光臂/光纤。
常用波长:405nm,447nm,532nm,671nm,808nm等。
激光器要求:长相干/窄线宽,高功率/频率/指向稳定性。
常用波长:405nm,457nm,473nm,532nm,589nm,639nm,660nm,671nm,RGB合光等。
主要组成:激光器,光谱仪,拉曼探头等。
激光器要求:窄线宽,高波长稳定性,高光谱纯度。
常用波长:213nm~360nm等。
主要组成:光源,图像摄取装置、图像采集/处理卡、图像处理系统等。
激光器要求:功率密度分布均匀,直线度高,条纹精细,边缘清晰,一字线、网格、多线、十字、多圆环等多种衍射模式可选。
常用波长:405nm-980nm范围,多种波长可选。
将高峰值功率脉冲激光聚焦到测试位点,当激光脉冲的能量密度大于击穿阈值时,就会在样品表面产生等离子体。等离子体能量衰退过程中产生连续的韧致辐射以及内部元素的离子发射线,通过光谱仪采集光谱发射信号,分析谱图中元素对应的特征峰强度,进而可以进行材料的识别、分类、定性以及定量分析。广泛应用于土壤、水及空气等环境污染监测领域,同时在植物学,考古学,工业过程监控和空间探索等方面也有多种应用。
主要组成:激光器,光学系统,三维自动调节样品台,光谱仪(单通道/多通道),软件分析系统等。
激光器要求:高能量稳定性,小体积,低Jitter值,脉宽ns量级,能量mJ量级。
常用波长:1064nm,532nm,355nm,266nm等。
激光器要求:优光束质量,选配扩束器。
常用波长:355nm,360nm,405nm,488nm, 532nm,1064nm等。
主要组成:激光器,发射系统,接收系统,信息处理等。
激光器要求:窄脉宽,高光束质量,高波长、能量稳定性、高偏振比,高单脉冲能量。
常用波长:1572nm, 1550nm, 1064nm, 532nm, 355nm, 266nm等。
主要组成:激光器,分散系统,光路系统等。
激光器要求:高功率稳定性,高重复性,优光束质量,环境适应性强,波长越短测量精度越高,可配光学平台使用保证光路的稳定。
常用波长:532nm,633nm(可替代氦氖激光器)。
中国作为全球第二大经济体,在量子科学领域其实起步并不算早,但却发展的很快。2016年,中国发射世界首颗量子科学实验卫星——“墨子号”。完成了包括千公里级的量子纠缠分发、星地的高速量子秘钥分发,以及地球的量子隐形传态等预定的科学目标。2017年,世界首条量子保密通信干线“京沪干线”的正式开通,成功实现人类首次洲际距离且天地链路的量子保密通信。干线全长2000余公里,全线路密钥率大于20千比特/秒可同时供上万用户密钥分发。2020年,祝世宁院士团队完成了首个基于无人机平台的量子纠缠分发实验,该系统量子纠缠光源每秒可产生240万对纠缠光子,能够与高空无人机、高空气球建立长距离链路,并与现有的光纤和卫星量子网络连接,解决量子网络不同层次之间全天候、广覆盖的问题。
近年来,量子通信技术已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注,量子信息技术已成为国际上量子物理和信息科学的研究热点。
激光器要求:光点稳定性好,光斑优,偏振比高等。
常用波长:405nm,488nm,520nm,532nm,635nm,1064nm等。
免疫浊度测定是将现代光学测量仪器与自动分析检测系统相结合应用于沉淀反应的免疫检测技术中的一种重要手段。当可溶性抗原与相应的抗体特异结合,在二者比例合适、并有一定浓度的电解质存在时,可以形成不溶性的免疫复合物,使反应液出现浊度。这种浊度可用肉眼或仪器测知,并可通过浊度推算出复合物的量,即抗原或抗体的量。免疫浊度测定是定量测定微量抗原物质的一种高灵敏度、快速的自动化免疫分析技术。可对各种液体介质中的微量抗原、抗体和药物及其他小分子半抗原物质定量测定。
按测量方式可分为光透射免疫比浊法和光散射免疫比浊法。光透射免疫比浊法测量透过光的强度。该方法操作简便,结果准确,能用全自动化或半自动化的仪器进行分析。但灵敏度低于散射比浊法、且抗体用量较大、耗时较长,不宜用于药物半抗原的检测。光散射免疫比浊法测量散射光的强度。该方法避免了透射光中所含有的透射、散射甚至折射等杂信号成分的影响,灵敏性和特异性均优于透射比浊法。该方法:(1)入射波长越短,散射光越强,(2)散射光强度与粒子的浓度和体积成正比,(3)散射光强度随焦点至检测器距离的平方和而下降。
目前免疫浊度技术主要用于各种蛋白质、载脂蛋白、半抗原(如激素、毒物和各种治疗性药物等)及微生物等检测。
激光器要求:高功率稳定性、高波长稳定性等。
常用波长:532nm,635nm,639nm,671nm,940nm等。
激光器要求:高亮度、高效率、长寿命、无污染、无杂斑等。
常用波长:257nm,360nm,405nm,430nm,457nm,532nm,545nm,561nm,579nm,647nm,671nm,800nm~1000nm宽带光源等。
激光器要求:光斑优,高峰值功率(漂白阶段),低功率(漂白前/后)等。
常用波长:488nm,532nm,635nm,770-840nm可调谐激光器等。
激光器要求:高重复性,优光束质量等。
常用波长:1064nm,355nm等。
激光多普勒血流成像是一种无创组织血流检测手段,也是是一项以大范围体表图象显示微循环状态的新技术。基于激光遇到血细胞会产生相移的原理,激光多普勒可以给出血流量、血流速度、血细胞浓度等。
该技术基于发射激光通过光纤传输,激光束被所研究组织散射后有部分光被吸收。击中组织中运动血细胞的激光波长发生了改变(即多普勒频移),而击中静止组织的激光波长没有改变。这些波长改变的强度和频率分布与监测体积内的血细胞数量、浓度和移动速度直接相关(频移大小与运动速度成正比, 散射光强度与运动的红细胞数量成正比)。通过接收光纤,这些信息被记录并且转换为电信号进行分析,利用计算机系统中各种图像处理分析软件存储 、分析处理后,输出反应血流情况的数据和反映血流与时间关系的曲线图。相比于光学微循环技术,激光多普勒血流成像技术可以测量体表任何部位的微循环。相比于超声多普勒,激光多普勒除了无创还可以检测组织的微循环和人情绪激动时血液灌注的快速变化。
激光多普勒血流成像技术目前已广泛应用于中枢神经系统、皮肤、肌肉、胃肠道、肝、胰、肾、肺、脾、眼、耳、鼻以及骨骼等几乎全身各个脏器的实验或临床组织微循环血流动力学研究,对疾病诊断、健康评价、药物评价等有重要意义。
激光器要求:光纤输出,连续/脉冲输出等。
常用波长:650nm,660nm,785nm等。
小白团队出品:零基础精通语义分割↓↓↓
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~