CSV是存储数据的最常用方法

马哥Linux运维

共 4090字,需浏览 9分钟

 ·

2021-12-23 09:18

Python的卓越灵活性和易用性使其成为最受欢迎的编程语言之一,尤其是对于数据处理和机器学习方面来说,其强大的数据处理库和算法库使得python成为入门数据科学的首选语言。在日常使用中,CSV,JSON和XML三种数据格式占据主导地位。下面我将针对三种数据格式来分享其快速处理的方法。


CSV数据

CSV是存储数据的最常用方法。在Kaggle比赛的大部分数据都是以这种方式存储的。我们可以使用内置的Python csv库来读取和写入CSV。通常,我们会将数据读入列表列表。

看看下面的代码。当我们运行csv.reader()所有CSV数据变得可访问时。该csvreader.next()函数从CSV中读取一行; 每次调用它,它都会移动到下一行。我们也可以使用for循环遍历csv的每一行for row in csvreader 。确保每行中的列数相同,否则,在处理列表列表时,最终可能会遇到一些错误。


import csv 

filename = "my_data.csv"

fields = [] 
rows = []   
# Reading csv file 
with open(filename, 'r'as csvfile: 
    # Creating a csv reader object 
    csvreader = csv.reader(csvfile) 

    # Extracting field names in the first row 
    fields = csvreader.next() 

    # Extracting each data row one by one 
    for row in csvreader: 
        rows.append(row)  
# Printing out the first 5 rows 
for row in rows[:5]: 
    print(row)


在Python中写入CSV同样容易。在单个列表中设置字段名称,并在列表列表中设置数据。这次我们将创建一个writer()对象并使用它将我们的数据写入文件,与读取时的方法基本一样。


import csv 

# Field names 
fields = ['Name''Goals''Assists''Shots'

# Rows of data in the csv file 
rows = [ ['Emily''12''18''112'], 
         ['Katie''8''24''96'], 
         ['John''16''9''101'], 
         ['Mike''3''14''82']]

filename = "soccer.csv"

# Writing to csv file 
with open(filename, 'w+'as csvfile: 
    # Creating a csv writer object 
    csvwriter = csv.writer(csvfile) 

    # Writing the fields 
    csvwriter.writerow(fields) 

    # Writing the data rows 
    csvwriter.writerows(rows)


我们可以使用Pandas将CSV转换为快速单行的字典列表。将数据格式化为字典列表后,我们将使用该dicttoxml库将其转换为XML格式。我们还将其保存为JSON文件!


import pandas as pd
from dicttoxml import dicttoxml
import json

# Building our dataframe
data = {'Name': ['Emily''Katie''John''Mike'],
        'Goals': [128163],
        'Assists': [1824914],
        'Shots': [1129610182]
        }

df = pd.DataFrame(data, columns=data.keys())

# Converting the dataframe to a dictionary
# Then save it to file
data_dict = df.to_dict(orient="records")
with open('output.json'"w+"as f:
    json.dump(data_dict, f, indent=4)

# Converting the dataframe to XML
# Then save it to file
xml_data = dicttoxml(data_dict).decode()
with open("output.xml""w+"as f:
    f.write(xml_data)


JSON数据

JSON提供了一种简洁且易于阅读的格式,它保持了字典式结构。就像CSV一样,Python有一个内置的JSON模块,使阅读和写作变得非常简单!我们以字典的形式读取CSV时,然后我们将该字典格式数据写入文件。


import json
import pandas as pd

# Read the data from file
# We now have a Python dictionary
with open('data.json'as f:
    data_listofdict = json.load(f)

# We can do the same thing with pandas
data_df = pd.read_json('data.json', orient='records')

# We can write a dictionary to JSON like so
# Use 'indent' and 'sort_keys' to make the JSON
# file look nice
with open('new_data.json''w+'as json_file:
    json.dump(data_listofdict, json_file, indent=4, sort_keys=True)

# And again the same thing with pandas
export = data_df.to_json('new_data.json', orient='records')


正如我们之前看到的,一旦我们获得了数据,就可以通过pandas或使用内置的Python CSV模块轻松转换为CSV。转换为XML时,可以使用dicttoxml库。具体代码如下:


import json
import pandas as pd
import csv

# Read the data from file
# We now have a Python dictionary
with open('data.json'as f:
    data_listofdict = json.load(f)

# Writing a list of dicts to CSV
keys = data_listofdict[0].keys()
with open('saved_data.csv''wb'as output_file:
    dict_writer = csv.DictWriter(output_file, keys)
    dict_writer.writeheader()
    dict_writer.writerows(data_listofdict)


XML数据

XML与CSV和JSON有点不同。CSV和JSON由于其既简单又快速,可以方便人们进行阅读,编写和解释。而XML占用更多的内存空间,传送和储存需要更大的带宽,更多存储空间和更久的运行时间。但是XML也有一些基于JSON和CSV的额外功能:您可以使用命名空间来构建和共享结构标准,更好地传承,以及使用XML、DTD等数据表示的行业标准化方法。

要读入XML数据,我们将使用Python的内置XML模块和子模ElementTree。我们可以使用xmltodict库将ElementTree对象转换为字典。一旦我们有了字典,我们就可以转换为CSV,JSON或Pandas Dataframe!具体代码如下:


import xml.etree.ElementTree as ET
import xmltodict
import json

tree = ET.parse('output.xml')
xml_data = tree.getroot()

xmlstr = ET.tostring(xml_data, encoding='utf8', method='xml')


data_dict = dict(xmltodict.parse(xmlstr))

print(data_dict)

with open('new_data_2.json''w+'as json_file:
    json.dump(data_dict, json_file, indent=4, sort_keys=True)


文章转载:Python编程学习圈
(版权归原作者所有,侵删)

点击下方“阅读原文”查看更多

浏览 50
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报