深度学习必懂的13种概率分布
共 3684字,需浏览 8分钟
·
2023-09-06 23:00
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
作为机器学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。
概率分布概述
共轭意味着它有共轭分布的关系。
在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。共轭先验维基百科在这里(https://en.wikipedia.org/wiki/Conjugate_prior)。
多分类表示随机方差大于 2。
n 次意味着我们也考虑了先验概率 p(x)。
为了进一步了解概率,我建议阅读 [pattern recognition and machine learning,Bishop 2006]。
分布概率与特征
1. 均匀分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/uniform.py
均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。
2. 伯努利分布(离散)
代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/bernoulli.py
先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。
利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。
3. 二项分布(离散)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/binomial.py
参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。
二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。
4. 多伯努利分布,分类分布(离散)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/categorical.py
多伯努利称为分类分布。
交叉熵和采取负对数的多伯努利分布具有相同的形式。
5. 多项式分布(离散)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/multinomial.py
多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。
6. β分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/beta.py
β分布与二项分布和伯努利分布共轭。
利用共轭,利用已知的先验分布可以更容易地得到后验分布。
当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。
7. Dirichlet 分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/dirichlet.py
dirichlet 分布与多项式分布是共轭的。
如果 k=2,则为β分布。
8. 伽马分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/gamma.py
如果 gamma(a,1)/gamma(a,1)+gamma(b,1)与 beta(a,b)相同,则 gamma 分布为β分布。
指数分布和卡方分布是伽马分布的特例。
9. 指数分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/exponential.py
指数分布是 α 为 1 时 γ 分布的特例。
10. 高斯分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/gaussian.py
高斯分布是一种非常常见的连续概率分布。
11. 正态分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/normal.py
正态分布为标准高斯分布,平均值为 0,标准差为 1。
12. 卡方分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/chi-squared.py
k 自由度的卡方分布是 k 个独立标准正态随机变量的平方和的分布。
卡方分布是 β 分布的特例
13. t 分布(连续)
代码:
https://github.com/graykode/distribution-is-all-you-need/blob/master/student-t.py
t 分布是对称的钟形分布,与正态分布类似,但尾部较重,这意味着它更容易产生远低于平均值的值。
via:https://github.com/graykode/distribution-is-all-you-need
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~