算法卷不动了,最后一个值得卷的百万年薪赛道!
机器学习AI算法工程
共 4620字,需浏览 10分钟
·
2022-03-23 11:26
众所周知,深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。
随着不同场景的需求变得更加多样,越来越多的IoT设备和场景需要与数据采集点以最接近的低时延来进行决策和操作;另外IoT物联设备生成的数据量通常很大,由于运营成本、时间和隐私方面的考虑,移动和存储所有生成的数据不太可行。
AI技术的一个趋势是在设备端上部署高性能的神经网络模型,并在真实场景中实时运行。如移动端/嵌入式设备,这些设备的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本无法在这些设备进行部署和达到实时运行。
存储空间和算力资源的限制,使得神经网络模型在移动设备和嵌入式设备上的存储与计算仍然具有巨大的挑战。
边缘AI技术到底有多火爆
01
内容亮点
全面技术讲解:课程涵盖了轻量化神经网络设计、神经网络部署前的优化方法、神经网络编译器的设计模式和具体实现、神经网络部署到芯片上的计算加速等全面的AI嵌入式芯片设计和应用相关人员就业必备的知识。 软硬件相结合:本课程除了全面讲解高性能神经网络相关的知识技术外,还会指导学员在硬件上进行实操。 专家导师授课:课程导师为AI芯片行业专家,相关项目经验十分丰富。
02
你将收获
掌握神经网络高性能实现的算法及工具 掌握通用芯片及专用AI芯片架构及网络加速技术 掌握通用芯片及专用AI芯片神经网络部署应用的实际案例 短期内对一个领域有全面的认识,大大节省学习时间 认识一群拥有同样兴趣的人、相互交流、相互学习
03
项目介绍
04
详细内容介绍
轻量化网络设计背景介绍 网络的计算量和内存分析工具 主干网络的轻量化 检测网络的轻量化 分割网络的轻量化 典型网络的设计思路
知识蒸馏方法介绍 知识蒸馏原理和步骤介绍 知识蒸馏训练方法缩减网络的实际分类网络演示 低秩分解原理 低秩分解加速计算在神经网络推理中的应用
网络剪枝的原理 常用的剪枝策略 神经网络框架中的剪枝功能介绍 剪枝的实际使用
网络量化的技术发展 不同离线量化算法的实现原理 神经网络框架中在线感知量化算法的原理及实现 实际案例
tvm、ncnn、tnn、mnn的简要对比 tvm relay和网络转换 网络的编译优化和推理加速 tvm的实际案例
ncnn的系统架构图 ncnn的数据结构及支持框架 ncnn的网络表示 ncnn网络优化,量化,及各平台的优化策略
tnn的系统架构图 tnn的数据结构及支持框架 tnn的网络表示 tnn网络优化,量化,及各平台的优化策略
mnn的系统架构图 mnn的数据结构及支持框架 mnn的网络表示 mnn网络优化,量化,及各平台的优化策略
cpu中的指令集优化:simd,avx,sse方法 tvm中对于cpu上神经网络加速的位置
arm中的neon优化 ncnn,tnn和mnn实现的讲解 具体加速效果的实际案例
openblas库的优化 nnpack/qnnpack的优化 lowpgemm
gpu与cpu计算加速的区别 英伟达gpu的原生cuda加速方法 推理侧tensorrt的使用
通用加速库cublas的使用 Vulkan的使用 opencl的使用
dsp计算加速 fpga计算加速 npu专用加速计算
嘉楠科技k210芯片介绍 nncase人脸检测案例
05
授课方式
基础知识讲解 前沿论文解读 论文代码复现 该知识内容的实际应用 该知识的项目实战 该方向的知识延伸及未来趋势讲解
06
适合人群
编程及深度学习基础良好,为了想进入AI芯片行业发展
想进入AI芯片行业的算法或IT工程师 想通过掌握硬件技术,拓宽未来职业路径的AI算法工程师
掌握python、C++开发,及深度学习的基础知识。
07
课程研发及导师团队
08
历届学员去向
评论