基于OpenCV的手掌检测和手指计数
共 3039字,需浏览 7分钟
·
2020-09-18 05:01
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
利用余弦定理使用OpenCV-Python实现手指计数与手掌检测。
手检测和手指计数
接下来让我们一起探索以下这个功能是如何实现的。
OpenCV
OpenCV(开源计算机视觉库)是一个开源计算机视觉和机器学习软件库。OpenCV的构建旨在为计算机视觉应用程序提供通用的基础结构,并加速在商业产品中使用机器感知。
导入库
• cv2: opencv [pip install opencv]
• numpy:用于处理数组和数学[pip install numpy]
import cv2 as cv
import numpy as np
导入图像
img_path = "data/palm.jpg"
img = cv.imread(img_path)
cv.imshow('palm image',img)
手掌图像
皮肤Mask
• 用于突出显示图像上的特定颜色。
• hsvim:将BGR(蓝色,绿色,红色)图像更改为HSV(色相,饱和度,值)。
• 较低:HSV中的肤色范围较小。
• upper:HSV中皮肤颜色的上限。
• skinRegionHSV:在HSV色彩空间的上下像素值范围内检测皮肤。
• 模糊:使图像模糊以改善遮罩。
• 脱粒:脱粒。
hsvim = cv.cvtColor(img, cv.COLOR_BGR2HSV)
lower = np.array([0, 48, 80], dtype = "uint8")
upper = np.array([20, 255, 255], dtype = "uint8")
skinRegionHSV = cv.inRange(hsvim, lower, upper)
blurred = cv.blur(skinRegionHSV, (2,2))
ret,thresh = cv.threshold(blurred,0,255,cv.THRESH_BINARY)
cv.imshow("thresh", thresh)
处理结果
轮廓线绘制
现在让我们在图像上找到轮廓。
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
contours = max(contours, key=lambda x: cv.contourArea(x))
cv.drawContours(img, [contours], -1, (255,255,0), 2)
cv.imshow("contours", img)
手掌轮廓线
凸包检测
hull = cv.convexHull(contours)
cv.drawContours(img, [hull], -1, (0, 255, 255), 2)
cv.imshow("hull", img)
检测结果
凸缺陷检测
手掌与凸包检测轮廓线的任何偏离的地方都可以视为凸度缺陷。
hull = cv.convexHull(contours, returnPoints=False)
defects = cv.convexityDefects(contours, hull)
凸缺陷示例
余弦定理
现在,这是数学时间!让我们了解余弦定理。
在三角学中,余弦定律将三角形边的长度与其角度之一的余弦相关。使用如图1所示的符号表示,余弦定律表明,其中γ表示长度a和b的边之间的长度以及与长度c的边相对的角度。
图1
式:
通过现在看这个公式,我们知道如果有的话;a,b和gama然后我们也找到c以及是否有c ; a,b,c然后我们也找到伽玛(反之亦然)
为了找到伽玛,使用以下公式:
使用余弦定理识别手指
图2
在图2中,我画了一个Side:a,b,c和angle:gamma。现在,该伽马始终小于90度,因此可以说:如果伽马小于90度或pi / 2,则将其视为手指。
手指个数计算
注意:如果您不熟悉凸出缺陷,可以阅读以下文章。
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contours_more_functions/py_contours_more_functions.html
凸缺陷返回一个数组,其中每一行都包含以下值:
• 起点
• 终点
• 最远点
• 到最远点的大概距离
通过这一点,我们可以轻松得出Sides:a,b,c(请参见CODE),并且根据余弦定理,我们还可以得出两根手指之间的伽马或角度。如前所述,如果伽玛小于90度,我们会将其视为手指。知道伽玛后,我们只需画一个半径为4的圆,到最远点的近似距离即可。在将文本简单地放入图像中之后,我们就表示手指数(cnt)。
if defects is not None:
cnt = 0
for i in range(defects.shape[0]): # calculate the angle
s, e, f, d = defects[i][0]
start = tuple(contours[s][0])
end = tuple(contours[e][0])
far = tuple(contours[f][0])
a = np.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = np.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = np.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
angle = np.arccos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) # cosine theorem
if angle <= np.pi / 2: # angle less than 90 degree, treat as fingers
cnt += 1
cv.circle(img, far, 4, [0, 0, 255], -1)
if cnt > 0:
cnt = cnt+1
cv.putText(img, str(cnt), (0, 50), cv.FONT_HERSHEY_SIMPLEX,1, (255, 0, 0) , 2, cv.LINE_AA)
让我们看看最终结果
cv.imshow('final_result',img)
我们也可以通过调用“ cv.VideoCapture()”来对视频执行此操作。代码链接如下https://github.com/madhav727/medium/blob/master/finger_counting_video.py
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~